

B.Sc. V Semester Degree Examination, Sept./Oct. 2023 PHYSICS

5.1 : Atomic, Molecular Physics and Special Theory of Relativity (New)

Max. Marks: 80 Time: 3 Hours

Instructions: 1) Section - I is compulsory.

2) Answer any five questions each from Section - II and Section - III.

SECTION - I

1. Answer any ten of the following questions. Mention the main features of confinuous.

 $(10 \times 1 = 10)$

- i) What are cathode rays?
- ii) What is the value of charge of an electron?
- iii) What are α-particles ?
- iv) What is excitation energy?
- v) Mention the two essential features of the vector atom model.
- vi) State Paulis exclusion principle.
- vii) Mention any four properties of X-rays.
- viii) Write Daone and Hunt equation.
 - ix) Mention the types of molecular spectra.
 - x) What is luminescence?
 - xi) What is coherent scattering?
- xii) What are stokes and antistokes lines?
- xiii) What is Zeeman effect ?
- xiv) Define proper time.

 $(5 \times 4 = 20)$

- 2. Mention the properties of cathode rays.
- 3. Describe Stern-Gerlach experiment.
- 4. State and explain Moseley's law. Mention its applications.
- 5. Write a note on Tyndall scattering of light.
- 6. Explain briefly florescence and phosphorescence.
- 7. Deduce the energy momentum relation according to special theory of relativity.
- 8. Mention the main features of continuous X-rays.

SECTION - III

 $(5 \times 10 = 50)$

- 9. a) Describe J. J. Thomson's method for determining e/m of an electron.
 - b) A charged oil drop is suspended in a uniform field of 30 Vm $^{-1}$ so that it neither falls or rises. Find the charge on the drop, given its mass as 9.75×10^{-15} kg. (7+3=10)
- a) State and explain the postulates of Bohr's theory of hydrogen atom. Obtain an expression for energy of electron in nth orbit of hydrogen atom.
 - b) The wavelength of the first member of Dalmer series of hydrogen is 6563×10^{-10} m. Calculate the wavelength of its second member. (7+3=10)
- 11. a) Write a note on LS and JJ coupling schemes for two electron system.
 - b) Calculate the Zeeman shift observed in the normal Zeeman effect when a spectral line of wavelength 5000×10^{-10} m is subjected to the magnetic field of 0.4 Wbm⁻², given e/m = 1.76×10^{11} C kg⁻¹. (7+3=10)

- 12. a) Give the theory of origin of pure rotational spectra of diatomic molecules mention its importance.
 - b) What is the minimum voltage applied to an X-ray tube to produce X-ray of 1 Å ? Given $e=1.6\times10^{-19}$ C

$$h = 6.625 \times 10^{-34} \text{ J-S}.$$
 (7+3=10)

- 13. a) What is Raman effect? Explain the experimental arrangement of Raman effect.
 - b) Explain quantum theory of Raman effect. (5+5=10)
- 14. a) Explain normal Zeeman effect using classical ideas and obtain an expression for Zeeman shift.
 - b) Calculate the wavelength of monochromatic X-rays selected in the first order from a calcite crystal at 13° d = 3.0357×10^{-10} m. (7+3=10)
- 15. a) Derive Lorentz transformation equations.
 - b) Calculate the velocity of an elementary particle whose mass is 10 times its rest mass.
 (7+3=10)

B.Sc. V Semester Degree Examination, February/March 2022 PHYSICS (New)

Paper - 5.1 : Atomic Molecular Physics and Special Theory of Relativity

Time: 3 Hours

Max. Marks: 80

Instructions: 1) Section – I is compulsory.

2) Answer any five questions each from Section – II and Section – III.

SECTION - I

Answer any ten of the following questions.

 $(10 \times 1 = 10)$

- i) What is the value of specific charge of an electron?
- ii) What type of oil is used in Millikan's oil drop method?
- iii) What is the value of ground state energy of the hydrogen atom?
- iv) Define ionisation potential.
- v) What are the two essential features of vector atom model?
- vi) What is anomalous Zeeman effect?
- vii) What are soft X-rays?
- viii) What is Duane and Hunt's law?
- ix) What is phosphorescence?
- x) What is rotational spectrum?
- xi) What is meant by scattering of light?
- xii) What are stokes lines?
- xiii) What is meant by time dilation?
- xiv) What is inertial frame of reference?

SECTION - II

 $(5 \times 4 = 20)$

- 2. Explain with neat diagram the construction of Dempster's mass spectroscope.
- 3. Explain spectral series of hydrogen atom according to Bohr.
- 4. State and explain Pauli's exclusion principle.
- 5. Explain the phenomenon of fluorescence.

- 6. Mention the application of Raman effect.
- 7. Mention the properties of X-rays.
- Derive the energy momentum relation according to the special theory of relativity.

- 9. a) Describe Millikan's experiment for measuring the charge of an electron.
 - b) In Millikan's oil-drop experiment a potential difference of 5085 volts is applied to the two plates which are separated by a distance of 1.6 × 10⁻² m. What is the smallest charge of a drop of 8.1 × 10⁻¹⁴ kg can have and still be maintained in the field? (Neglect the Bouyant force of air). (7+3=10)
- a) State Bohr's postulates. Obtain an expression for the energy of electron in nth orbit of hydrogen atom and frequency of an emitted spectral line based on Bohr's theory.
 - b) The wavelength of the first member of Balmer series of hydrogen is 6563×10^{-10} m. Calculate the wavelength of its second member. (7+3=10)
- 11. a) What is Zeeman effect? Obtain an expression for Zeeman shift.
 - b) In a normal Zeeman experiment the Calcium 4228Å line splits into 3 lines separated by 0.25Å in a Magnetic field of 3T. Calculate the specific charge of the electron. (7+3=10)
- 12. a) Describe Stern-Gerlach experiment with necessary theory.
 - b) Explain briefly coupling scheme.

(7+3=10)

- a) Obtain an expression for the rotational energy levels of a diatomic level and the frequency of rotational spectra.
 - b) An X-ray tube operates at 100 kV. Calculate the shortest wavelength of X-rays.
 (7+3=10)
- 14. a) What is Raman effect? Describe the experimental study of Raman effect.
 - b) Mention the characteristics properties of Raman lines.

(7+3=10)

- 15. a) State the postulates of special theory of relativity hence derive Lorentz transformation equation.
 - b) Atomic particles in the form of a beam have a velocity 85% of the speed of light. What is their relativistic mass as compared to their rest mass? (7+3=10)

B.Sc. V Semester Degree Examination, March - 2021

PHYSICS

Atomic Molecular Physics & Special Theory of Relativity

Paper - 5.1

(New)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Section I is compulsory.
- 2. Answer any Five questions each from Section II and Section III.

SECTION-I

1. Answer any Ten of the following questions.

 $(10 \times 1 = 10)$

- i) What is the value of charge of an electron?
- ii) What is the S.I. unit of specific charge?
- iii) What is the value of Rydberg's constant?
- iv) Define excitation potential.
- v) What is Zeeman effect?
- vi) State Larmor's theorem.
- vii) What is a characteristic spectra of X rays?
- viii) Write Duane and Hunt relation.
- ix) What is electronic spectrum?
- x) What is luminescence?
- xi) Mention the types of scattering of light.
- xii) What are stokes lines?
- xiii) What is meant by proper length?
- xiv) What is meant by time dilation?

SECTION - II

2. Mention the properties of Cathod rays.

 $(5 \times 4 = 20)$

3. Explain spectral series of hydrogen atom according to Bohr.

- **4.** Describe Franck Hertz experiment to demonstrate the existance of discrete energy state of atoms.
- 5. Mention the main features of continuous X rays.
- 6. State and explain Pauli's exclusion Principle.
- 7. Mention the characteristics properties of Raman lines.
- 8. Obtain Einstein's mass energy relation.

- 9. a) Describe Millikan's experiment for Measuring the charge of an electron. (7+3=10)
 - b) A waterdrop of 0.1mm radius is singly ionized. Calculate the electric field required to keep the drop stationary. Assume $g = 9.8 \text{ ms}^{-2}$.
- 10. a) State and explain the postulates of Bohr's theory of hydrogen atom. obtain an expression for the radius of the electron. (7+3=10)
 - b) Calculate the velocity of the electron in the first Bohr orbit of the hydrogen atom and compare it with the velocity of light.
- 11. a) What is Zeeman effect? Give the quantum theory of normal Zeeman effect.

 (6+4=10)
 - b) Explain briefly coupling schemes.
- 12. a) Describe Stren Gerlach experiment with necessary theory. (6+4=10)
 - b) Explain Stark effect.
- 13. a) Give the theory of pure rotational vibrational spectra of a diatomic molecule. (7+3=10)
 - b) Calculate the wave length of monochromatic X rays selected in the first order from a calcite crystal of 23° , $d = 3.0365 \times 10^{-10} \text{m}$.
- 14. a) What is Raman effect? Describe an experimental arrangement for studying it.

 (6+4=10)
 - b) Explain the Quantum theory of Raman effect.
- 15. a) Derive an expression for variation of Mass with velocity. (7+3=10)
 - b) At what speed a body will have a mass 2 times that of its rest mass?

B.Sc. V Semester Degree Examination, March - 2021 PHYSICS

Atomic Molecular Physics & Special Theory of Relativity

Paper - 5.1

(New)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Section I is compulsory.
- 2. Answer any Five questions each from Section II and Section III.

SECTION-I

1. Answer any Ten of the following questions.

 $(10 \times 1 = 10)$

- i) What is the value of charge of an electron?
- ii) What is the S.I. unit of specific charge?
- iii) What is the value of Rydberg's constant?
- iv) Define excitation potential.
- v) What is Zeeman effect?
- vi) State Larmor's theorem.
- vii) What is a characteristic spectra of X rays?
- viii) Write Duane and Hunt relation.
- ix) What is electronic spectrum?
- x) What is luminescence?
- xi) Mention the types of scattering of light.
- xii) What are stokes lines?
- xiii) What is meant by proper length?
- xiv) What is meant by time dilation?

SECTION-II

2. Mention the properties of Cathod rays.

 $(5 \times 4 = 20)$

3. Explain spectral series of hydrogen atom according to Bohr.

- **4.** Describe Franck Hertz experiment to demonstrate the existance of discrete energy state of atoms.
- **5.** Mention the main features of continuous X rays.
- 6. State and explain Pauli's exclusion Principle.
- 7. Mention the characteristics properties of Raman lines.
- 8. Obtain Einstein's mass energy relation.

- 9. a) Describe Millikan's experiment for Measuring the charge of an electron. (7+3=10)
 - b) A waterdrop of 0.1mm radius is singly ionized. Calculate the electric field required to keep the drop stationary. Assume $g = 9.8 \text{ ms}^{-2}$.
- 10. a) State and explain the postulates of Bohr's theory of hydrogen atom. obtain an expression for the radius of the electron. (7+3=10)
 - b) Calculate the velocity of the electron in the first Bohr orbit of the hydrogen atom and compare it with the velocity of light.
- 11. a) What is Zeeman effect? Give the quantum theory of normal Zeeman effect.

 (6+4=10)
 - b) Explain briefly coupling schemes.
- 12. a) Describe Stren Gerlach experiment with necessary theory. (6+4=10)
 - b) Explain Stark effect.
- 13. a) Give the theory of pure rotational vibrational spectra of a diatomic molecule. (7+3=10)
 - b) Calculate the wave length of monochromatic X rays selected in the first order from a calcite crystal of 23° , $d = 3.0365 \times 10^{-10}$ m.
- 14. a) What is Raman effect? Describe an experimental arrangement for studying it. (6+4=10)
 - b) Explain the Quantum theory of Raman effect.
- 15. a) Derive an expression for variation of Mass with velocity. (7+3=10)
 - b) At what speed a body will have a mass 2 times that of its rest mass?

B.Sc. V Semester Degree Examination, September - 2021 PHYSICS

Atomic Molecular Physics and Special Theory of Relativity

Paper: 5.1 (NEW)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- i) Section I is compulsory.
- ii) Answer any five questions each from Section II and Section III.

Section - I

1. Answer any ten of the following questions.

 $(10 \times 1 = 10)$

- i) What type of oil is used in Millikan's oil drop method?
- ii) Write the SI unit of specific charge.
- iii) Who proposed the orbits of the electron in the atoms are elliptical?
- iv) What is the value of ground state energy of the hydrogen atom?
- v) What are the two essential features of vector atom model?
- vi) What is anomalous zeeman effect?
- vii) What are hard x-rays?
- viii) What is continuous spectra of x-rays?
- ix) Mention the types of molecular spectra.
- x) What is electronic spectrum?
- xi) Mention the types of scattering of light.
- xii) Mention any two characteristics of Raman lines.
- xiii) Define proper length.
- xiv) What is non inertial frame?

Section - II

- 2. Explain with neat diagram the construction of Dempster's mass spectroscope. $(5\times4=20)$
- 3. Write a note on JJ Thomson's atom model.

- 4. Write a note on quantum numbers.
- 5. Explain LS coupling.
- **6.** Explain the phenomenon of phosphorescence.
- 7. Explain the concept of time dilation.
- 8. Mention the applications of Raman effect.

Section - III

- 9. a) Explain the theory and experimental set up of Dunnington method to determine e/m of electron.
 - b) Electrons move at right angles to a magnetic field of 2×10^{-2} Wm⁻² and enter it with a velocity of 10^7 ms⁻¹. Find the radius of the circular path. Given $e = 1.6 \times 10^{-19}$ C and $m = 9.1 \times 10^{-31}$ kg (7+3=10)
- 10. a) State and explain the postulates of Bohr's theory of hydrogen atom. Obtain an expression for the radius of the electron and the velocity of the electron.
 - b) An electron transition occurs from n = 4 to n = 2 energy level in hydrogen atom. Find the wavelength of emitted radiation, if the energy of the electron in ground state is -13.6 eV. (7+3=10)
- 11. a) Give the quantum theory of normal zeeman effect.
 - b) Calculate the zeeman shift of line of wavelength 6000 A°. When a magnetic field of 1 Wb m⁻² is applied in normal zeeman effect? (7+3=10)
- 12. a) Describe the construction and working of coolidge tube.
 - b) Explain Frank-Hertz experiment.

(6+4=10)

- 13. a) Give the theory of rotation vibration spectra of a diatomic molecule.
 - b) Explain the phenomenon of fluorescence.

(7+3=10)

- 14. a) What is Raman effect? Give the quantum theory of Raman effect.
 - b) Write a note on Rayleigh's scattering.

(6+4=10)

- 15. a) Describe Michelson and Morley experiment with necessary theory.
 - b) How fast would a rocket have to go relative to an observer for its length to be contracted to 99% of its length at rest.

B.Sc. V Semester Degree Examination, September - 2021 PHYSICS

Atomic Molecular Physics and Special Theory of Relativity

Paper : 5.1

(Old)

Time: 3 Hours

Maximum Marks: 80

THE RESIDENCE OF STREET		A 11 1	
Instructions	to	Candidates:	
Insu actions	w	Cumununtes .	

- i) Section I is compulsory.
- ii) Answer any four questions each from Section II and Section III.

SECTION - I

1. Answer any Twelve of the following.

 $(12 \times 1 = 12)$

- A) Choose the correct answer
 - i) Cathode rays are deflected by
 - a) Electric field

- b) Magnetic field
- c) Both (a) and (b)
- d) None of these
- ii) P fund series occurs in the region
 - a) Ultravoilet

b) Visible

c) Infrared

- d) None of these.
- iii) According to Rayleigh scattering intensity of scattered radiation is
 - a) $I \propto \lambda$

b) $I \propto \frac{1}{\lambda^2}$

c) $I \propto \lambda^2$

- d) $I \propto \frac{1}{\lambda^4}$
- iv) The idea of electron spin was introduced by
 - a) Uhlenbeck and Goudsmit
- b) Bohr

c) Plank

d) Schrodinger.

(9+4=13)

D)	E:11	in	the	h	lan	١,
B)	ГШ	ш	une	U.	lall	ĸ

- The value of specific charge of electron is _____ i)
- ii) Stern - Gerlach experiment provides proof for
- iii) In fluorescence, the emitted wavelength is _____
- Accelerated frames are called _____ frames.

C) State true or false

- i) The nuclear atomic model was proposed by Rutherford.
- ii) Pure vibrational spectra are observed only in liquids.
- Antistokes lines are always more intense than stokes lines. iii)
- D) Answer the following in one or Two sentences.
 - Write an expression for force experienced by an electron of charge 'e' in an i) electric field E.
 - ii) Define coherent scattering.
 - What is Duane Hunt limit? iii)
 - Define proper length. iv)

SECTION - II

- 2. Explain Dunnington's method to determine the specific charge of electron. $(4\times4=16)$
- 3. Explain Rutherford's α -ray scattering experiment.
- 4. State and explain Moseley's law.
- 5. Explain stark effect.
- 6. Discuss briefly Rayleigh scattering and explain blue and red colour of sky.
- 7. Explain the concept of relativity of simultaneity.

SECTION - III

- 8. a) Describe an experiment to determine the charge of an electron by Millikan's oil drop method.
 - b) What is the magnitude of acceleration of electron of speed 2.5×10⁶ ms⁻¹ in a magnetic field of 2×10^{-4} T? Given $\frac{e}{m} = 1.76 \times 10^{11} Ckg^{-1}$

12.

a)

115210ld

(9+4=13)

- State and explain the postulates of Bohr's theory of hydrogen atom. Obtain an expression for radius of the electron.
 - The series limit wavelength of Balmer series in hydrogen spectrum is 3646 A°. b) Calculate the wavelength of the first member of this series. (9+4=13)
- 10. a) What is zeeman effect? Give the quantum theory of zeeman effect.
 - b) Explain fluorescence and phosphorescence. (9+4=13)
- 11. Give the theory of pure rotational vibrational spectra of a diatomic molecule. a)
 - Write a note on selection rule. b) What is Raman effect? Give the quantum theory of Raman effect.
 - b) Explain intensity and polarization of Raman lines. (9+4=13)
- 13. a) Derive lorentz transformation equations.
 - Calculate the velocity of the particle whose mass is 10 times its rest mass. (9+4=13) b)

5.1-14

B.Sc. V Semester Degree Examination, Oct/Nov. - 2019

PHYSICS

ATOMIC, MOLECULAR PHYSICS & THEORY OF RELATIVITY PAPER- 5.1

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Section I is compulsory.
- 2. Answer any FOUR questions each from Section II and Section III.

SECTION-I

Answer any Twelve of the following questions.

 $(12 \times 1 = 12)$

- 1. A) Choose the correct answer:
 - i) A strong argument for the particle nature of cathod ray is
 - a) Produce fluorescence
 - b) Travel through vacuum
 - c) Gets deflected by electric & magnetic fields
 - d) To cast shadow
 - ii) P-fund series occurs in the region
 - a) uv-region
 - b) Vissible
 - c) IR-region
 - d) None of these
 - iii) The frequency of a spectral line is X-ray spectrum varies
 - a) Directly as the square of z
 - b) Inversely as the square of z
 - c) Directly as the cube of z
 - d) Directly as the square root of z

- iv) In fluorescence, the emitted wavelength is
 - a) Equal to absorbed wavelength
 - b) Greater than absorbed wavelength
 - c) Smaller than absorbed wavelength
 - d) None of the above
- B) Fill in the blanks:
 - i) According to Pauli's exclusion principle the maximum number of electrons in the d- sub shell is ------
 - ii) In normal Zeeman effect, when the spectral lines are viewed longitudinally, the number of lines observed are ------
 - iii) The idea of electron spin was introduced by ------
 - iv) Pure rotational spectrum appears in ----- region.
- C) State True or False:
 - i) The maximum number of electrons in are orbit is n².
 - ii) The stokes lines are always more intense than antistoke's lines.
 - iii) All clocks in the space ship will go slow by a factor $\sqrt{\frac{C^2 u^2}{V^2}}$.
- D) Answer the following in one or two sentences:
 - i) State Mosely's law.
 - ii) What is stark effect?
 - iii) Define coherent scattering.
 - iv) Define concept of proper time.

SECTION-II

- 2. Mention the properties of cathod rays.
- 3. Explain Rutherford's α -ray scattering experiment.
- 4. State Pauli's exclusion principles. Illustrate the principle for K & L shell.
- 5. Explain the main features of continuous X ray spectrum.
- **6.** What are different kinds of molecular spectra? Explain them.
- 7. Deduce the formula for relativistic variation of mass with velocity.

 $(4 \times 4 = 16)$

P.T.O.

 $(4 \times 13 = 52)$

- 8. a) Describe Millikan's oil drop experiment for determining the charge of an electron.
 - b) A monoenergetic electron beam with a speed of $5.20 \times 10^{-6} ms^{-1}$ is subjected to a magnetic field of $1.5 \times 10^{-3} T$ normal to the beam velocity, what is the radius of the circle traced by the beam, given e/m for electron is $1.7 \times 10^{11} CKg^{-1}$. (9+4=13)
- 9. a) State Bohr's postulates of atomic structure and hence derive an expression for energy of an electrons in the nth orbit of hydrogen atom.
 - b) Calculate the Rydberg constant for hydrogen atom if the energies of the 1st and 3rd orbits are -13.6 ev and -1.51 ev. (9+4=13)
- **10.** a) Describe Strem- Gerlach experiment with necessary theory.
 - b) The Zeeman components of a 500nm spectral line are 0.0116nm apart when the magnetic field is 1 tesla. Find the ration e/m for the electron. Given $c = 3 \times 10^8 ms^{-1}$. (9+4=13)
- 11. a) Give the theory of origin of pure rotation as spectrum of a diatomic molecule. Mention its importance.
 - b) What is the minimum voltage applied to an X- ray tube to produce X-ray of $_{1A^0}$?. Given $e = 1.6 \times 10^{-19} c$ h=6.625×10⁻³⁴ Js. (9+4=13)
- 12. a) What is Raman effect? Explain the experimental study of Raman effect. Mention the characteristics of Raman lines.
 - b) A radiation of wavelength 546.1nm excites a substance to emit a Raman line of wavelength 538.2nm. Calculate the Raman frequency and the wavelength of corresponding stoke's line. (9+4=13)
- 13. a) State the postulates of special theory of relativity hence derive Lorentz transformation equations.
 - b) The rest mass of an electron is $9.1 \times 10^{-31} Kg$. What will be its mass if it were moving with $(3/5)^{th}$ the speed of light. (9+4=13)

三山一大山村)元

There is with the major of the country of the count

27522

B.Sc. V Semester Degree Examination, September/October 2023 PHYSICS (New)

Paper – 5.2 : Quantum Mechanics, Nuclear Physics and Energy Physics

Time: 3 Hours

Max. Marks: 80

- Instructions: 1) Section I is compulsory.
 - 2) Answer any five questions from Section II and Section - III.

adoosorcien vs. SECTION - I how bus notativished inslocks (s. 9

1. Answer any ten of the following questions.

(10×1=10)

- i) Define wave function.
- ii) Define zero point energy.
 - iii) What are magic numbers ? The lead of some of the source of the sour
- iv) Define binding energy of nucleus.
- v) Define half-life of radioactive element.
- vi) State radioactive decay law.
- vii) What is dead time of G. M. Counter?
- viii) Define mean life of radioactive element.
- (ix) Write an antiparticle of an electron.
 - x) Name the four basic interactions in nature.
 - xi) What are conventional energy sources?
 - xii) Define uncontrolled chain reaction.

SECTION - II

Answer any five of the following. (5×4=20)

- 2. Explain compton scattering theory.
- 3. Explain shell model.
- Describe construction and working of cyclotron.

- 5. Define transient and secular equilibrium.
- 6. Explain classification of elementary particles.
- 7. Write a note on solar energy.
- 8. Write a note on P-P cycle of thermo-nuclear reactions.

		2) Answer any the questions nem Section - It and	
An	SW	er any five of the following.	(5×10=50)
9.	a)	Explain construction and working of gamma ray microscope.	
	b)	Calculate the energy in eV of a photon of wavelength 2Å.	(7+3=10)
10.	a)	Derive Schrodinger's time-dependent equation.	
	b)	Mention any three failures of classical mechanics.	(7+3=10)
11.	a)	Describe how range of an α -particle is determined by Bragg's exper	riment.
		Calculate the range of α -particle at initial energy 4 MeV in aluminium	. (7+3=10)
12.	a)	Explain construction and working of G. M. Counter.	
	b)	Write a note on Quark model of elementary particles.	(7+3=10)
13.	a)	Explain origin of gamma rays.	
		Write any three applications of nuclear radiations.	
14.	a)	Write brief description about	
		i) Wind energy	
		ii) Tidal energy.	
	b)	Distinguish between conventional and non-conventional energy sources.	(7+3=10)
15.	a)	Explain construction and working of nuclear power reactor.	
	b)	Write the difference between nuclear fission and fusion.	(7+3=10)

B.Sc. V Semester Degree Examination, February/March 2022 PHYSICS (New)

Paper – 5.2 : Quantum Mechanics, Nuclear Physics and Energy Physics

Time: 3 Hours Max. Marks: 80

Instructions: 1) Section - I is compulsory.

2) Answer any five questions from Section - II and Section - III.

SECTION - I

1. Answer any ten of the following.

 $(10 \times 1 = 10)$

- i) What is de-Broglie wave?
- ii) What is wave function?
- iii) Define specific binding energy.
- iv) What happens when neutron emits π^- ?
- v) Mention two units of radioactivity.
- vi) Define half life of radioactive element.
- vii) What is an accelerator?
- viii) Define avalanche in G.M. counter.
- ix) Write the four basic interaction in the nature.
- x) What is the antiparticle of an electron?
- xi) What is meant by renewable source of energy? Give examples.
- xii) Mention the instruments used to measure solar constant.
- xiii) What is nuclear chain reaction?
- xiv) What are the functions of the control rods in a nuclear power reactor?

SECTION - II

Answer any five of the following.

 $(5 \times 4 = 20)$

- 2. Derive an expression for the de-Broglie wavelength.
- 3. Write a short note on mass defect and binding energy of nucleus.
- 4. Define mean life of a radioactive substance and derive an expression for it.
- 5. Explain the classification of elementary particles.
- 6. Describe the construction, working of betatron.
- Write a note on solar energy.
- Write a note on C-N cycle of thermonuclear reactions.

(6+4)

SECTION - III

Answe	er any five of the following. (5×10=50
9. a)	Derive an expression for compton shift.
b)	Calculate the de-Broglie wavelength of an electron carrying an energy of 1.5 eV. (7+3)
10. a)	Discuss the basic properties of nucleus.
b)	Calculate the binding energy per nucleon of $_7\mathrm{N}^{14}$. Assume nuclear mass of $_7\mathrm{N}^{14}$ = 13.99934 a.m.u.
	Given: Mass of proton is 1.007284 a.m.u. and Mass of neutron is 1.008674 a.m.u. (7+3)
11. a)	Describe how range of an α -particle is determined by Bragg's experiment.
b)	10 ⁻³ kg of radioactive sample takes 50s to loose 10 ⁻² gram. Calculate its half life period and decay constant. (6+4)
12. a)	Describe the construction and working of Geiger-Muller counter.
b)	A cyclotron in which the magnetic flux density is 1.8 T is used to accelerate protons. How rapidly should the electric field between the dees be reversed. Mass of proton = 1.67×10^{-27} kg and charge = 1.6×10^{-19} C. (7+3)
13. a)	Explain the four basic interaction in nature.

14. a) Write a note on (i) solar energy (ii) wind energy.

b) Write a note on Quark model of an elementary particles.

- b) Explain the prospects of renewable energy sources. (7+3)
- 15. a) What is Q-value of nuclear reaction? Obtain an expression for Q-value of a reaction.
 - b) Calculate the Q-value of the reaction ${}_{7}N^{14}+{}_{2}He^4 \rightarrow {}_{8}O^{17}+{}_{1}H^1$ Given: mass of ${}_{7}N^{14}=14.007515$ a.m.u mass of ${}_{2}He^4=4.003837$ a.m.u. mass of ${}_{8}O^{17}=17.004533$ a.m.u. and mass of ${}_{1}H^1=1.008142$ a.m.u. (7+3)

B.Sc. V Semester Degree Examination, March - 2021

PHYSICS

Quantum Mechanics, Nuclear Physics and Energy Physics

Paper - 5.2

(New)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1) Section I is compulsory.
- 2) Answer any Five questions from Section II and Section III.

SECTION - I

1. Answer any TEN of the following.

 $(10 \times 1 = 10)$

- i) What is wave function?
- ii) Define zero point energy.
- iii) Define specific binding energy.
- iv) What are magic numbers?
- v) Define half life of a radioactive substance.
- vi) What is Radioactivity?
- vii) What is Betatron condition?
- viii) What is internal quenching?
- ix) Write four basic interaction in nature.
- x) What is the antiparticle of positron?
- xi) What are conventional energy sources?
- xii) Give one application & tidal energy.
- xiii) What is the function of control rods in a nuclear power reactor?
- xiv) What is plasma state?

SECTION - II

2. Obtain the Schrodinger's time independent wave equation.

 $(5 \times 4 = 20)$

- 3. What are nuclear forces? Write its characteristics.
- 4. What is mean life? Obtain an expression for it.
- 5. Write a note on Quark model of an elementary particles.

[P.T.O.

- 6. Write a note on solar energy.
- 7. Describe construction and working of linear accelerator.
- 8. Explain C-N cycle and P-p cycle.

- 9. a) State and explain Heisen berg's uncertainty Principle and describe the diffraction of electrons by a single slit to illustrate the Principle.
 - b) Find the de-broglie wavelength of neutron of energy 12.8 Mev given mass of neutron is 1.675×10^{-27} kg. (7+3)
- 10. a) Explain failure of proton electron hypothesis.
 - b) Explain Yukawa meson theory of nuclear forces. (7+3)
- 11. a) What is range of an α -particle? Determine the range of an α -particle by Bragg's method.
 - b) Calculate the time required for 30% of a radioactive sample to disintegrate. Half life of sample is 1.4×10^{10} years. (7+3)
- 12. a) Explain construction and working of cyclotron.
 - b) The magnetic field 0.7 T is applied to accelerate deuterons in a cyclotron. What is the frequency of the electric field applied between these?

$$m=3.4\times10^{-27}$$
kg, charge= 1.6×10^{-19} c (7+3)

- 13. a) Describe the construction and working of Scintillation counter.
 - b) Write a note on classification of elementary particles. (6+4)
- 14. a) What is chain reaction? Explain controlled and uncontrolled chain reaction.
 - b) Explain transmutation equation and Q-value of a nuclear reaction.
 - c) Calculate the Q-value of the reaction ${}_{4}Be^{9} + {}_{2}He^{4} \rightarrow {}_{2}c^{14} + {}_{0}n^{1}$.

Given: mass of
$$Be^9 = 9.01506 \ a.m.u$$

mass of $He^4 = 4.008879 \ a.m.u$
mass of $_0n^1 = 1.008986 \ a.m.u$
mass of $_0^{12} = 12.003316 \ a.m.u$. (7+3)

- **15.** a) Write brief description about.
 - i) Utilization of wind energy
 - ii) Tidal energy.
 - b) Write a note on biomass energy. (7+3)

B.Sc. V Semester Degree Examination, September - 2020 PHYSICS

Quantum Mechanics, Nuclear physics and Energy Physics Paper: 5.2

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1) Section I is compulsory.
- 2) Answer any Four questions from section II and any Four questions from Section III.

SECTION-I

1. Answer any **Twelve** of the following:

 $(12 \times 1 = 12)$

- A) Choose the correct answer
 - i) According to Heisenberg's uncertainty principle.

$$\Delta x.\Delta p = \hbar$$

b)
$$\Delta x.\Delta t = \hbar$$

c)
$$\frac{\Delta E}{\Delta t} = \hbar$$

d)
$$\Delta p.\Delta t = \hbar$$

- ii) The nuclear radius is proportional to
 - a) A

b) A

c) A

- d) None
- iii) The condition for secular equillibrium is
 - a) $N_1 \lambda_1 = \lambda_2 N_2$

b) $N_1 \lambda_2 = N_2 \lambda_1$

c) $N_1 N_2 = \lambda_1 \lambda_2$

d) None

- iv) The radiant energy of the sun results from
 - a) Nuclear fission
- b) Nuclear fusion
- c) Combustion
- d) cosmic radiation

[P.T.O.

DI	T7:11 .	. 1			
B)	Fill in	n the	b	lan	KS:

- The compton shift in with scattering angle. i)
- The energy of a particle in a box is given by ii)
- iii)
- If Q<0, the reaction is <u>endother soic</u> iv)

State True or False: C)

- In a blackbody distribution curve, wein's law is applicable to large temperature. i)
- Alpha particles are doubly ionised helium atoms. ii)
- iii) G.M counter is used to accelerate the particles.
- Answer the following in one or two sentences: D)
 - i) What are matter waves?
 - What is Radioactivity? ii)
 - What is chain reaction? iii)
 - What are conventional energy sources? iv)

SECTION-II

 $(4 \times 4 = 16)$

- Describe γ ray microscope experiment to illustrate Heisenberg's uncertainty principle. 2.
- Give the physical significance of Ψ . 3.
- Define mean life. Obtain an expression for it. 4.
- Write the characteristics of Nuclear forces. 5
- Explain the working of linear accelerator. 6.
- Write a note on solar energy. 7.

- 8. a) Describe Davisson & Germer experiment to demonstrate the wave nature of electrons.
 - b) Calculate the wavelength of an electron having a velocity of $2 \times 10^6 ms^{-1}$. Assume mass of electron to be $9.1 \times 10^{-31} kg$. (9+4=13)
- 9. a) Obtain Schrodinger's time dependent and time independent wave equation.
 - b) An electron is constrained in a one dimensional box of side 1 nm. Obtain the first three eigenvalues in ev. (9+4=13)
- **10.** a) Explain failure of proton- electron hypothesis and success of proton- neutron hypothesis of nuclear constitution.
 - When a proton capture a neutron to produce a deuteron nucleus a γ ray of energy 230 Mev based on the following reaction. $_1H^1 + _0^{n^1} \rightarrow _1H^2 + h\gamma$ is emitted Mass of $_1H^1 = 1.008142$ amu mass of $_1H^2 = 2.014735$ amu calculate the mass of neutron. (9+4=13)
- 11. a) Give the theory of successive disintegration and obtain the condition for secular equillibrium.
 - b) How long will it take for a sample of radium -D to decreases to 10% if its half life is 22 years. (9+4=13)
- 12. a) Describe the construction working and theory of cyclotron.
 - b) The magnetic field 0.7T is applied to accelerate deuteron in a cyclotron. What is the frequency of the electric field applied between the dees? $mn = 3.4 \times 10^{-27} kg$. (9+4=13)
- 13. a) Write brief description about.
 - i) Utilization of Tidal energy
 - ii) Thermo nuclear reaction
 - b) Distinguish between Nuclear fusion & Nuclear fission. (9+4=13)

[P.T.O

B.Sc. V Semester Degree Examination, Oct./Nov.- 2019 **PHYSICS**

Quantum Mechanics Nuclear Physics & Energy Physics

Paper : 5.2

Time:	3 Hours					Maximum Marks: 80
Instruction to Candidates: 1)			Section - I is comp	oulsory.		
			2)	Answer any Four and Section - III.	questions	each from Section - II
				SECTION - I		
1. A1	nswer an	y Twelve of	the fo	llowing:		(12×1=12)
(A)	Choos	se the correc	t ansv	ver.		
	i) I	n compton s	catter	ing change in wavele	ength is ma	aximum when θ is
	a	ı) 90°	b)	0° c) 180	o d)	45°
	ii) T	The uncertain	nty rel	ation cannot hold the	e following	g pairs:
	a) Position	and M	Momentum		
	t	e) Energy	and tin	me		
	C	c) Linear r	nome	ntum and angle		
	Ċ	d) Angular	mom	entum and angle		
				e atom decay with the ose atomic number:	e emission	of a β -particle a new
	а	a) is decre	ased b	by 1	b)	is increased by 2
	() Remain	s uncl	nanged	d)	is increased by 4

5.

11881 81		ILE RESERVE	881				11322			
		iv)	Prot	tons are						
			a)	Leptons	b)		Mesons			
			c)	Baryons	d)		None			
	B)	Fill	in the	blanks						
		i)	The		n nature of	1:	ight has emerged in an attempt to			
		ii)	The	normalisation con	ndition for v	Na	ave function is			
		iii)	Alpl	ha rays are emitte	d from radio	oa	active substances are			
		iv)	Anti	iparticle of positro	on is					
	C)	Stat	e Tru	e or False						
		i)		Broglie wavelengt perature.	h is inversly	p	roportional to square root of absolute			
		ii)	Nuc	lear forces are cha	arge depende	eı	nt.			
		iii)	Fiss	ion reaction takes	place only a	at	high temperature.			
	D)	Ans	wer t	he following in O	ne or Two se	er	ntences.			
		i) ·	Defi	ine Zero point ene	rgy					
		ii)	Defi	ine decay constant						
		iii)	Wha	at is quenching?						
		iv)	Wha	at are non convent	ional energy	y :	sources?			
					ECTION -	I				
Ans 2.	-			the following: ma Ray microsco	pe to illustra	ite	(4×4=16) e Heisenberg's uncertainty principle.			
3.	Der	ive S	chrod	linger's time deper	ndent wave	ec	quation.			
4.	Wha	at are	Nucl	ear forces? Write i	What are Nuclear forces? Write its characteristics.					

Define mean life of a radioactive substance & derive an expression for it.

- 6. Write a note on C-N cycle of thermonuclear reactions.
- 7. Write a note on solar energy.

Answer any four of the following:

 $(4 \times 13 = 52)$

- **8.** a) Describe Davisson & Germer experiment to demonstrate the wave character of electrons.
 - b) An electron has a speed of 600 ms⁻¹ with an accuracy of 0.005%. Calculate the certainty with which we can locate the position of the electron

Given $h=6.625\times10^{-34} \text{ J-S}$

$$m=9.1\times10^{-31}kg$$
 (9+4)

- 9. a) Derive energy expression & normalised eigen functions for a particle in one dimensional box of finite height.
 - b) The period of linear harmonic oscillator is 1ms. Find its Zero point energy in ev. (9+4)
- 10. a) Give a short account of the
 - i) Size
 - ii) Charge
 - iii) Mass
 - iv) Density
 - v) Magnetic moment of the Nucleus.
 - b) A neutron breaks into a proton & an electron. Calculate the energy produced in this reaction in Mev.

Mass of electron = 9×10^{-31} kg

Mass of proton = 1.6725×10^{-27} kg

Mass of neutron = 1.6747×10^{-27} kg

Speed of light =
$$3 \times 10^8 \text{ ms}^{-1}$$
. (9+4)

P.T.O

- 11. a) Describe the determination of range of an α-particles by Bragg's method.
 - b) Derive radio active decay law.
 - c) Calculate the time required for 10% of a sample of thorium to disintegrate. T for thorium is 1.4×10^{10} years. (6+3+4)
- 12. a) Describe the construction working & theory of cyclotron.
 - b) A cyclotron in which the magnetic flux density is 20T is used to accelerate the α -particles. How rapidly should the electric field between the dees be reduced. Mass of α particle is 6.64832×10^{-27} kg. (9+4)
- **13.** a) What is Q-value of Nuclear reaction? Obtain an expression for Q-value of a reaction.
 - b) Distinguish between Nuclear fusion & fission. (9+4)

[P.T.O

B.Sc. V Semester Degree Examination, Oct./Nov.- 2019 PHYSICS

Quantum Mechanics Nuclear Physics & Energy Physics

Paper : 5.2

Time: 3 Hours	Maximum Marks: 80
Instruction to Candidates:	1) Section - I is compulsory.
	 Answer any Four questions each from Section - II and Section - III.
	SECTION - I
1. Answer any Twelve of	the following: (12×1=12)
A) Choose the correct	et answer.
i) In compton s	cattering change in wavelength is maximum when θ is
a) 90°	b) 0° c) 180° d) 45°
ii) The uncertain	nty relation cannot hold the following pairs:
a) Position	and Momentum
b) Energy	and time
c) Linear r	nomentum and angle
d) Angular	momentum and angle
	pactive atom decay with the emission of a β -particle a new ed whose atomic number:
a) is decre	ased by 1 b) is increased by 2
c) Remain	s unchanged d) is increased by 4

4.

5.

-									
		iv)	Protons are						
			a) Leptons	b)	Mesons .				
			c) Baryons	d)	None				
	B)	Fill	in the blanks						
		i)	The idea of quantum nexplain	ature of	light has emerged in an attempt to				
		ii)	The normalisation condi	tion for w	vave function is				
		iii)	Alpha rays are emitted f	rom radio	active substances are				
		iv)	iv) Antiparticle of positron is						
	C)								
		i) ·	De Broglie wavelength is inversly proportional to square root of absolute temperature.						
		ii)	Nuclear forces are charg	e depende	ent.				
		iii)	Fission reaction takes pla	ace only a	t high temperature.				
	D)	Ans	swer the following in One or Two sentences.						
		i)	Define Zero point energy	/					
		ii)	Define decay constant.						
		iii)	What is quenching?						
		iv)	What are non convention	nal energy	sources?				
				CTION -					
Ans			our of the following: Gamma Ray microscope	to illustra	(4×4=16) te Heisenberg's uncertainty principle.				

Derive Schrodinger's time dependent wave equation.

Define mean life of a radioactive substance & derive an expression for it.

What are Nuclear forces? Write its characteristics.

- 6. Write a note on C-N cycle of thermonuclear reactions.
- 7. Write a note on solar energy.

Answer any four of the following:

 $(4 \times 13 = 52)$

- 8. a) Describe Davisson & Germer experiment to demonstrate the wave character of electrons.
 - b) An electron has a speed of 600 ms⁻¹ with an accuracy of 0.005%. Calculate the certainty with which we can locate the position of the electron

Given $h=6.625\times10^{-34} \text{ J-S}$

 $m=9.1\times10^{-31}kg$ (9+4)

- 9. a) Derive energy expression & normalised eigen functions for a particle in one dimensional box of finite height.
 - b) The period of linear harmonic oscillator is 1ms. Find its Zero point energy in ev. (9+4)
- 10. a) Give a short account of the
 - i) Size
 - ii) Charge
 - iii) Mass
 - iv) Density
 - v) Magnetic moment of the Nucleus.
 - b) A neutron breaks into a proton & an electron. Calculate the energy produced in this reaction in Mev.

Mass of electron = 9×10^{-31} kg

Mass of proton = 1.6725×10^{-27} kg

Mass of neutron = $1.6747 \times 10^{-27} \text{kg}$

Speed of light = 3×10^8 ms⁻¹. (9+4)

P.T.O