

B.Sc. Fourth Semester Degree Examination September/October 2023 PHYSICS: Paper - 4.1 (New) - Physical Optics and Electricity

Time: 3 Hours Max. Marks: 60

Instructions: 1) Part – A: All guestions are compulsory.

2) Part - B: Solve any five questions.

saved privilege bits an PART - A divineewed conserved and similar (d.

1. Answer the following questions : (10×1=10)

- a) What is cylindrical wavefront?
- b) Define coherent source.
- c) Define interference of light.
- d) What is Fraunhofer diffraction?
- e) Define polarization of light.
- f) What is biaxial crystal?
- g) What is a half wave plate?
- h) What is a rectifier?
- Define lower cut off frequency.
- i) Define electron gun.

PART - B

Answer any five of the following:

 $(5\times(7+3)=50)$

- 2. a) Describe Huygens' principle of secondary wavelets. Based on Huygens' principle deduce laws of reflection.
 - b) Define group velocity and wave velocity. Derive the relation between them.

7

3

3. a) Describe an experiment to study the interference of light using Lloyd's mirror. Also determine the wavelength of light using Lloyd's mirror. b) The fringe width in a Young's double slit interference pattern is 2.4×10^{-4} m when red light of wavelength 6400 Å is used. By how much will it change if blue light of wavelength 4000 Å is used? 3 4. a) Describe an experiment with relevant theory to determine the wavelength of light using transmission grating. 7 b) Write the difference between dispersive power and resolving power. 3 5. a) Using Laurent's half shade polarimeter explain how do you determine the specific rotation of a liquid. 7 b) Calculate the specific rotation (in degree) if the plane of polarization is turned through 26.4° traversing 20 cm length of 20% sugar solution. 3 6. a) Determine the resonant frequency and the impedance of LCR parallel circuit. b) When an inductor L and a resistor R in series are connected to 12 V. 50 Hz supply, a current of 0.5 A flows in the circuit. The current differs in phase with the applied voltage by $(\pi/3)$ radians. Calculate the value of R. 7. a) Explain with circuit diagram the working of a half wave rectifier. Obtain expression for ripple factor and efficiency of rectification. 7 b) A PN junction diode with resistance of 200 Ω is to supply power to 1000 Ω load from a 300 V rms source of supply. Calculate the efficiency of the rectifier. 3 8. a) Describe the construction and working of C.R.O. and mention the uses of C.R.O. 7 b) Determine the cut off frequency of a RC high pass filter. 3

B.Sc. IV Semester Degree Examination, April/May - 2019

PHYSICS

Physical Optics and Electricity

PAPER - 4.1

Time: 3 Hours

Maximum Marks:80

Instructions to Candidates:

- 1. Section -I is compulsory
- 2. Answer any four questions each from Section III and from Section III

SECTION-I

1. Answer any twelve of the following:

 $(12 \times 1 = 12)$

- A. Choose the correct answer:
 - i) Corpuscular theory of light explains the phenomena of
 - a) Interference

b) Diffraction

c) Polarisation

- d) None of the above
- ii) Area of half period zone is
 - a) Independent of order of zone
- b) Depends on order of zone
- c) Depends on wavelength of light d)
- Both (a) and (c)
- iii) In case of positive crystals
 - a) $\mu_e > \mu_o$

b) $\mu_e < \mu_o$

c) $\mu_e = \mu_o$

- d) None of these
- iv) Resonance in LCR series occurs when natural frequency
 - a) Is equal to applied frequency
 - b) Is greater than applied frequency
 - c) Is less than applied frequency
 - d) None of the above

B.	Fill	in	the	h	an	lec.
					011	

- i) If the path difference between two waves is $\frac{\lambda}{4}$, the corresponding phase difference is -----
- ii) In Fraunhoffer diffraction, the source and screen are effectively at -----distance from aperture.
- iii) In L-R circuit current ----- the applied emf.
- iv) Optical activity of a substance is measured by its -----

C. State True or False:

- i) LCR series circuit is called rejector circuit.
- ii) Zone plate has single focal length.
- iii) Coherent sources can be obtained from a single source.

D. Answer in one or two sentences:

- i) Define interference of light.
- ii) What is uniaxial crystal?
- iii) Define rms value of ac current.
- iv) What is band width?

SECTION-II

 $(4 \times 4 = 16)$

- 2. Write a note on wave theory of light.
- 3. Explain in brief Young's double slit experiment.
- 4. Prove that resultant amplitude at a point due to a wave front is equal to half of the amplitude due to first half period zone.
- 5. Give the differences between half wave plate and quarter wave plate.
- 6. Obtain an expression for efficiency of a full wave rectifier.
- 7. Describe how time period and voltage are measured using CRO.

SECTION-III

 $(4 \times 13 = 52)$

- **8.** a) Give the theory of interference by Fresnel's biprism and obtain an expression for fringe width.
 - b) A parallel beam of light of wave length 6000×10^{-10} m is incident on thin transparent film of refractive index 1.5 such that the angle of refraction is 45° in the film. Calculate the smallest thickness of the film which will appear dark by reflection.

(9+4)

- 9. a) Give the theory of interference in wedge shaped thin film and explain why broad source is necessary to observe interference in thin film.
 - b) When a movable mirror of Michelson's interferometer is shifted through 0.0589mm, a shift of 200 fringes is observed. What is the wavelength of light used? (9+4)
- 10. a) What is zone plate? Give the theory of zone plate and obtain an expression for primary focal length of zone plate.
 - b) A parallel beam of light is normally incident upon a plane diffraction grating having 14500 lines per inch. The first order spectrum of two bright lines are at a deviation of 19°39' and 19°40'30". Calculate the difference in their wavelength.

(9+4)

- 11. a) What is optical activity? Explain Fresnel's theory of optical rotation.
 - b) Calculate the thickness of doubly refracting crystal required to introduce a path difference of $\frac{\lambda}{2}$ between the ordinary ray and extraordinary ray when $\lambda = 6000 A^0$, $\mu_o = 1.55$, $\mu_c = 1.54$.
- 12. a) Describe Anderson's bridge experiment to determine the value of self inductance with necessary theory.
 - b) Give the comparison between LCR series and parallel resonance circuit. (9+4)

- 13. a) Derive an expression for current, impedance and resonant frequency when an alternating emf is applied to LCR parallel circuit.
 - b) An inductance of 10H is connected in series with a resistance of 50Ω to a 220v, 50Hz ac source. Calculate the value of the capacitor to be connected in series to make the power factor unity. (9+4)