

NEP

B.Sc. II Semester Degree Examination, Sept./Oct. 2023 PHYSICS

DSC - A2: Electricity and Magnetism

Time: 3 Hours

Max. Marks: 60

Instructions: 1) Part – A: All questions are compulsory.

2) Part - B: Answer any five questions.

PART – A

1. a) Define electric dipole moment. Write its SI unit.

 $(5 \times 2 = 10)$

- b) State Gauss's theorem.
- c) Mention the uses of series resonant circuit.
- d) Write Maxwell's equations in differential forms.
- e) What are hard magnetic materials? Mention any one of the application.

PART - B

- a) Obtain expression for the potential due to a uniformly charged conducting sphere at external and internal points. (6+4=10)
 - b) Two equal and similar charges 4 cm apart in air repel each other with a force equivalent to that of 3 kg.wt. Find the charge in coulomb.
- 3. a) Define capacity of a condenser. Derive an expression for the energy stored in a charged capacitor. (6+4=10)
 - Determine the area of parallel plate air capacitor if the capacitance of 25 nF and separation between the plates is 0.04 m.
- 4. a) Derive an expression for growth of charge in RC circuit.

(6+4=10)

b) An electric current of 1 ampere is flowing in a wire of copper 0.01 cm² cross-sectional area. What is the electrical field in the wire ? Take resistivity of copper = $1.6 \times 10^{-8} \Omega m$.

5. a) State and explain Biot-Savart's law.

(6+4=10)

- b) A current of 40 mA is passing through a coil of inductance 1000 mH. Find the magnetic energy stored in the coil.
- a) Derive an expression for the current and phase difference between the applied emf and current in the AC circuit containing L and R. (6+4=10)
 - b) Calculate the resonant frequency of LCR parallel resonant circuit with L = 10 mH, C = 1 μ F and R = 1 $k\Omega$.
- 7. a) Obtain the expression for equation of continuity.

(6+4=10)

- b) Write a note on displacement current.
- a) Give an account of Langevin's theory of diamagnetism and show that diamagnetic susceptibility is independent of temperature. (6+4=10)
 - b) The magnetic susceptibility of the medium is 948×10^{-11} . Calculate the permeability (or absolute permeability) and relative permeability.

NEP

B.Sc. II Semester Degree Examination, September/October 2022 PHYSICS

DSC - A2 : Electricity and Magnetism

Time: 3 Hours

Max. Marks: 60

Instructions: 1) Part - A: Answer all questions.

2) Part - B: Answer any five questions.

PART - A

Answer the following questions.

 $(10 \times 1 = 10)$

- a) Define electric dipole.
 - b) Write SI unit for electric flux.
 - c) Define electrical potential.
 - d) What is dielectric substance?
 - e) What is current density?
 - f) State Ampere's law.
 - g) What is meant by electrical resonance?
 - h) Define impedance.
 - i) Define magnetic moment.
 - j) Define magnetic induction.

PART - B

Answer any five questions.

- a) State Gauss theorem. Find the electric field intensity due to a line of charge of infinite length at a distance r from it.
 - b) Consider a point charge q = 2.2×10⁻⁶C. What is the radius of the equipotential surface having potential 32V? (7+3)
- a) Define the capacity of a capacitor. Obtain an expression for the capacity of a parallel plate capacitor.
 - b) 1μF capacitor is charged to 160 V. How many excess of electrons are there on plate? Charge on electron is 1.6×10⁻¹⁹C. (7+3)

- 4. a) Derive an expression for the growth of current in an L-R circuit.
 - b) Calculate the electrical conductivity of the material of a conductor of length 4m, area of cross-section 0.02 mm², having a resistance of 3Ω . (7+3)
- 5. a) State and explain Biot-Savart's law.
 - b) A current of 5A produces a flux of 2×10⁻³Wb through a coil of 500 turns.

 Calculate the energy stored in the magnetic field. (7+3)
- a) Derive expression for current and impedance when an alternating emf is applied to a circuit having capacity and resistance in series.
 - b) A.C. circuit contains 100 mH inductance and 10Ω as resistance. Calculate the power factor if the frequency of a.c. is 50 Hz. (7+3)
- a) Write Maxwell's equation in differential form. Show that electromagnetic waves are transverse in nature.
 - b) Mention the characteristics of displacement current. (7+3)
- 8. a) Give an account of Langevin's theory of diamagnetism and show that diamagnetic susceptibility is independent of temperature.
 - b) An iron rod of density 7700 kgm⁻³ and specific heat capacity 460.4 Jkg⁻¹K⁻¹ is subjected to cycles of magnetization at the rate of 60 cycles per second. If the area of B-H curve for the specimen is 5000 joules, find the rise in temperature per minute of the specimen, assuming that the heat generated is not radiated. (7+3)

B.Sc II Semester Degree Examination, April /May- 2019

PHYSICS

Heat, Thermodynamics and Waves and Oscillations

PAPER - 2.1

(New)

Time: 3 Hours Maximum Marks: 60

Instructions to Candidates:

1) Part A: Answer all questions

2) Part B: Answer any FIVE questions

PART-A

1. Answer the following questions.

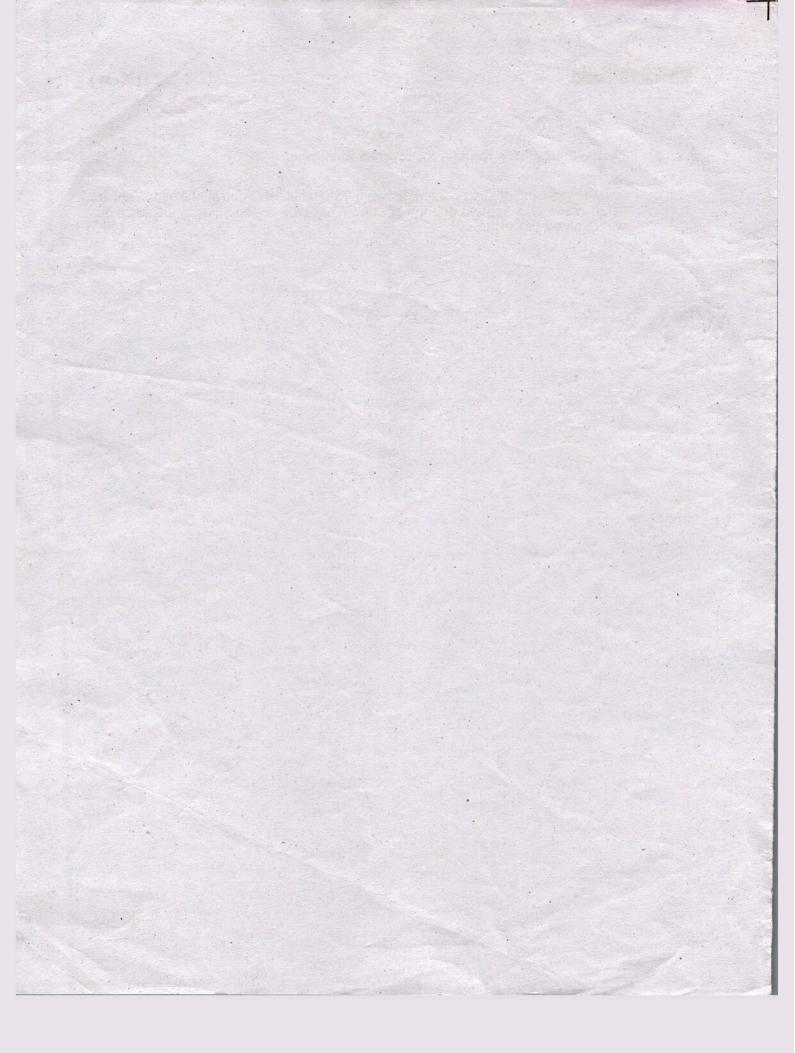
 $(10 \times 1 = 10)$

- a) Define mean free path.
- b) State first law of thermodynamics.
- c) State carnot's theorem .
- d) Define entropy.
- e) Define temperature of inversion.
- f) What is a black body?
- g) What is a free-free rod?
- h) What is progressive wave?

- i). Define resonance.
- j) What are beats?

PART-B

 $(5 \times 10 = 50)$


- 2. a) State and prove the principle of equipartition of energy.
 - b) Calculate the rms velocity of oxygen molecules at 27° C. Pressure of oxygen at NTP= 1.0129×10^{5} N/m² and density of oxygen at NTP = 1.43 kg/m³. (7+3)
- 3. a) What is heat engine? Derive an expression for the efficiency of heat engine in terms of temperature of source and sink.
 - b) The efficiency of carnot engine is 50% when the temperature of the sink is 400k. Find the temperature of the source. (7+3)
- 4. a) Derive clausius claypeyron's latent heat equation.
 - b) Find the increase in boiling point of water at 100° C. When pressure is increased by one atmosphere. Given density of water = 1 kg/m³ and latent heat of vapourisation = 2.268×10^{6} J kg. (7+3)
- 5. a) Explain production of low temperature by adiabatic demagnetisation.
 - b) Explain in brief regenerative cooling

(7+3)

- 6. a) Derive plank's law of radiation and deduce weins displacement law from it.
 - b) A perfectly black body of surface area 0.04m^2 is at 427°C and is placed inside an encloser at 27°C . what is the rate of loss of heat. Assume $\sigma = 5.7 \times 10^{-8} \text{ km}^{-2} \text{ k}^{-4}$ (7+3)
- 7. a) Derive Newton's formula for velocity of sound in air.
 - b) Velocity of sound in air at 14°C is 340m/sec what will be the velocity of sound when pressure of the gas is doubled and its temperature is raised to 200°C?(7+3)

- 8. a) Derive the sabine's formula for reverberation time.
 - b) A 4m long String of mass per unit length 0.75×10^{-3} kg/m is tied at one end. A tension of 20 Newton is applied at another end. What will be the velocity of transverse waves along the string. (7+3)

