

(NEP)

B.Sc. III Semester Degree Examination, February/March - 2023 PHYSICS

Wave Motion and Optics

Paper: DSC: A3

Time: 3 Hours

Maximum Marks: 60

Instructions to Candidates:

- 1. Part: A All questions are compulsory.
- 2. Part: B Answer any five questions.

PART-A

 $(5 \times 2 = 10)$

- 1. a. What is meant by a wave motion? Mention its characteristics.
 - b. State the principle of superposition. When is it valid?
 - c. Write the expression for velocity of transverse waves along a stretched string.
 - d. What are Newton's ring? How are they formed?
 - e. Mention the difference between a zone plate and a lens.

PART-B

- 2. a. What is progressive wave? Derive an expression for intensity of progressive wave.
 - b. Calculate the velocity of sound waves in carbon dioxide at N.T.P. Density of carbon dioxide at NTP is 1.9777 Kgm⁻³ and the ratio of the specific heat capacities of the gas is 1.306. What will be its velocity at 300 K? (6+4=10)
- 3. a. What are lissajous figures? Find the resultant of two SHM of equal period, when they Act at right angles to each other?
 - b. Two tuning forks P and Q produce 4 beats per second when sounded together. The frequency of P is 480 Hz. When Q is loaded with a wax the beats stop. Calculate the frequency of Q?
 (6+4=10)
- 4. a. Obtain the frequency of longitudinal vibrations of a bar fixed at both ends.
 - The volume of the hall is 5900 m³ and its total surface area of absorption of sound is 200m² and has absorption coefficient 0.4. Calculate the reverberation period of the hall.

- 5. a. Explain young's double slit experiment to obtain interference pattern.
 - b. Write a note on corpuscular model of light. (6+4=10)
- 6. a. Describe the Michelson interferometer with a neat diagram.
 - b. In a Newton's ring experiment, the diameter of 10^{th} dark ring due to wavelength $6000 \,\text{A}^{\circ}$ in air is 0.5×10^{-2} m. Find the radius of curvature of the lens. (6+4=10)
- 7. a. Discuss the Fraunhofer diffraction due to single slit and also discuss the intensity distribution on the screen.
 - A parallel beam of sodium light is allowed to be incident normally on a plane grating having 4250 lines per centimeter and a second order spectral line is observed to be deviated through a 30°. Calculate the wavelength of the spectral line. (6+4=10)
- 8. a. Explain Quarter and half wave plate.
 - b. A ray of light is incident on the surface of a glass plate of refractive index 1.732 at the polarizing angle. Calculate the angle of refraction of the rays. (6+4=10)

B.Sc. III Semester Degree Examination, February/March 2022 **PHYSICS**

Paper: 3.1 (New): Optical Instruments, Laser and Electrodynamics

Time: 3 Hours Max. Marks: 60

Instructions: 1) Part - A: All questions are compulsory. 2) Part - B: Solve any five questions.

PART - A

Answer the following questions.

 $(10 \times 1 = 10)$

- a) Define Coulomb.
- b) What is scalar field?
- c) Write two applications of lasers.
- d) What is aberration?
- e) Define dipole.
- f) Write the laplace equation in vector notation.
- g) Write the equation of continuity.
- h) Write two applications of Holography.
- i) What is the mass of electron?
- i) What are principal points?

PART - B

2. Obtain the expression for the equivalent focal length of two thin lenses placed co-axially in air and separated by a distance. Also derive the expression for α and β which gives the position of principal points.

10

- 3. a) Show that the chromatic aberration in lenses is equal to the product of mean focal length and dispersive power of the material.
 - b) A convex lens has a focal length for red colour 15.5×10⁻²m. Its focal length for violet colour is 14.45×10⁻²m. If an object is kept at a distance of 0.4m from the lens, calculate the longitudinal chromatic aberration produced by (7+3=10)the lens.

P.T.O.

- a) With the help of energy band diagram, discuss the working of semiconductor laser.
 - b) What is population inversion? Explain briefly.

(7+3=10)

- 5. a) State and prove Gauss divergence theorem and write its importance.
 - b) Show that $\nabla(\phi + \psi) = \nabla\phi + \nabla\psi$.

(6+4=10)

- 6. a) What is Solenoid? Obtain an expression for the magnetic field at any point on the axis of solenoid.
 - b) A circular coil has a radius of 0.1 m and a number of turns of 50. Calculate the magnetic induction at a point, at the centre of the coil, when a current of 0.1 A flows in it.
- 7. a) State and explain Ampere's circuital law.
 - b) Calculate the value of the torque on a current loop placed in a uniform magnetic field. (5+5=10)
- 8. a) Obtain the Maxwell's field equations for electromagnetic waves in isotropic non-conducting media.
 - b) State and explain Poynting's theorem.

(6+4=10)

B.Sc. III Semester Degree Examination, March/April - 2021 PHYSICS

Optical Instruments, Laser And Electrodynamics

Paper - 3.1

(New)

Time: 3 Hours

Maximum Marks: 60

Instructions to Candidates:

- 1. Part A: All are Compulsory.
- 2. Part B: Solve any Five questions.

PART-A

Answer the following questions.

 $(10 \times 1 = 10)$

- 1. a) What is meant by Chromatic aberration?
 - b) What are focal points?
 - c) What is meant by metastable state?
 - d) Define scalar product.
 - e) State Gauss divergence theorem.
 - f) State Columb's law in electrostatics.
 - g) Define electric potential at a point.
 - h) Define electric dipole.
 - i) What is solenoid.
 - j) Write the equation of velocity of light in a medium.

PART - B

- 2. a) What is meant by achromatic aberration? Derive the condition for achromatism of two thin lenses separated by a finite distance.
 - b) Two convex lenses of focal length 0.1m and 0.2m are placed 0.08m apart. Calculate the equivalent focal length. (7+3=10)

- 3. a) Derive an expression for the equivalent focal length of two thin converging lenses separated by a distance in a Co-axial system.
 - b) Two converging lenses of Powers 5 diopters and 4 diopters are placed Coaxially 12cm apart. Find the focal length of combination. (7+3=10)
- 4. a) Describe the construction and working of semiconductor laser.
 - b) Mention the application of laser.

(6+4=10)

- 5. a) State and prove Stokes theorem.
 - b) Show that $\nabla \cdot (\nabla \phi) = \nabla^2 \phi$.

(6+4=10)

- 6. a) Obtain the expression for the magnetic field at a point due to a straight conductor of finite length.
 - b) State and explain Biot Savart's Law.

(6+4=10)

- 7. a) Obtain the expression for the torque on a dipole in a magnetic field.
 - b) A coil produces a self induced voltage of 60mV when the current in the coil varies at the rate of 30mA per milli second. What is the self inductance?(6+4=10)
- 8. a) Derive the electromagnetic wave equation in a free space.
 - b) Mention the characteristics of electromagnetic waves.

(7+3=10)

B.Sc. III Semester Degree Examination, Oct./Nov. - 2019

PHYSICS

OPTICAL INSTRUMENTS, LASER AND ELECTRODYNAMICS

PAPER- 3.1

(New)

Time: 3 Hours

Maximum Marks: 60

Instructions to Candidates:

1. Part A: All are compulsory.

2. Part B : Solve any Five questions.

Part-A

Answer the following questions.

 $(10 \times 1 = 10)$

- a) What is the circle of least confusion?
- b) What are principal points?
- c) What is optical pumping?
- d) State Stoke's theorem.
- e) Define scalar field.
- f) Write the Laplace equation.
- g) State Biot Savarti law.
- h) State Ampare's circuital law.
- i) Write the equation of continuity.
- j) What is the velocity of electromagnetic waves in free space?

Part - B

- 2. a) Derive the condition for achromatism of two thin lenses separated by a finite distance.
 - b) Calculate the focal lengths of a convex lens of crown glass (disperssive power 0.012) and a concave lens of flint glass (disperssive power 0.020). So that when placed in contact they form an achromatic converging combination of focal length 30 cm. $f_{2}^{2} = 20 \text{ cm}$ $f_{2}^{2} = 20 \text{ cm}$ $f_{3}^{2} = 30 \text{ cm}$ $f_{4}^{2} = 10 \text{ cm}$
- 3. a) Derive an expression for the equivalent focal length of a coaxial system of two thin converging lenses separated by a distance.
 - b) A Ramsden's eyepiece is to have an effective focal length of 3 cm. Calculate the focal lengths of the lens component and their distance of separation. (7+3=10)
- 4. a) Explain the construction and working of He Ne laser with necessary energy level diagram.
 - b) Write a note on spontaneous and stimulated emission of radiation. (6+4=10)
- 5. a) i) If $\frac{1}{r}$ is the position vector of a point. Prove that curl $\frac{1}{r} = 0$.
 - ii) Show that $\nabla \cdot (\phi \overline{A}) = \nabla (\phi) \cdot \overline{A} + \phi \nabla \cdot \overline{A}$.
 - b) Explain the physical significance of divergence. (6+4=10)
 - 6. a) State and prove Gauss law in electrostatics.
 - b) Calculate the magnetic field at a distance of 5×10^{-2} m due to a long straight conductor carrying a current of 150 mA. (7+3=10)
 - a) Show that current carrying loop behaves like a magnetic dipole.
 - b) State Faraday's laws of electromagnetic induction and explain them. (6+4=10)
- 8. a) State and prove Poynting's theorem.
 - b) Describe Hertz experiment to produce and detect the electromagnetic waves.

(6+4=10)