

B.Sc. V Semester Degree Examination, February/March- 2023 MATHEMATICS (New)

Fourier Series, Laplace Transform and Linear Transformation Paper: 5.1

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Part A: All questions are compulsory.
- 2. Part B: Solve any Five questions.

PART-A

Answer the following questions.

- 1. Define Fourier series of a function f(x) of period 2π .
- 2. Find the Fourier coefficient b_n for the function $f(x) = x^2$; $-\pi < x < \pi$.
- 3. Prove that L[af(t) + bg(t)] = aL[f(t)] + bL[g(t)] where f(t), g(t) an two functions and a, b are constants.
- 4. Evaluate $L[\cos 3t \cosh 3t]$.
- 5. Evaluate $E^{-1} \left[\frac{S+b}{S^2 + a^2} \right]$.
- 6. Verify Convolution theorem for the function f(t) = t and $g(t) = e^t$.
- 7. Define linear transformation.
- 8. If T:U \rightarrow V is a linear transformation then prove that $T(-\alpha) = -T(\alpha)$.
- 9. Find the linear transformation $T:\mathbb{R}^2 \to \mathbb{R}^2$ such that T(1, 0) = (1, 1) and T(0, 1) = (-1, 2).
- 10. State Rank-Nullity theorem.

PART-B

(5×12=

- II. Answer any Five of the following questions.
 - 11. Obtain the Fourier series of $f(x) = e^{-ax}$; $-\pi < x < \pi$ when f(x) is period 2π .
 - 12. Find the Fourier expansion for the function $f(x) = x x^2$; -l < x < l
- III. 13. Find the half-range Sine series of the function $f(x) = \pi x$ in $0 < x < \pi$.
 - 14. Evaluate $L[\cosh 4t, \sin t]$.
- IV. 15. If L[f(t)] = F(s) then prove that L[f'(t)] = SF(s) f(0).
 - 16. Evaluate $L^{-1} \left[\frac{S+1}{S^2 4S 5} \right]$.
- V. 17. Evaluate $L^{-1} \left[\frac{S}{S^2 + S 2} \right]$.
 - 18. Using Convolution theorem evaluate $L^{-1} \left[\frac{S^2}{\left(S^2 + 9\right)^2} \right]$.
- VI. 19. $T: V_3(R) \rightarrow V_2(R)$ is defined by T(x, y, z) = (x + y, y + z) show that T is linear transformation.
 - 20. Find the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ su that T(1, 1) = (0, 1) and T(-1, 1) = (3, 2).
- VII. 21. Find the matrix of linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ define T(x, y) = (2y x, y, 3y 3x) relative to bases $B_1 = \{(1,1), (-1,1)\}$ $B_2 = \{(1,1,1), (1,-1,1), (0,0,1)\}.$

- 22. For the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ find the corresponding linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with respect to basis $\{(1,0), (1,1)\}$.
- VIII. 23. Let T be a linear operator on V. Let $F = ((\beta_{ij}))$ and $((\gamma_{ij}))$ be the matrices of linear operator τ relative to basis B and C respectively then show that $F((a_{ij})) = ((a_{ij}))G$ when $((a_{ij}))$ is the transition matrix.
 - 24. Prove Rank-Nullity theorem.

B.Sc. V Semester Degree Examination, February/March - 2023

MATHEMATICS (New)

Differential Equations

Paper: 5.2

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Part A: Answer all questions.
- 2. Part B: Answer any Five questions, each question carry equal marks.

PART-A

Answer the following questions.

 $(10 \times 2 = 20)$

1. Find the C.F. of the equation

$$\frac{d^2y}{dx^2} - y = \frac{2}{1 + e^x}.$$

- Find the Wronskian equation for the equation $\frac{d^2y}{dx^2} + y = \sec x$.
- 3. Define Total differential equation and write the condition for integrability of single differential equation.

4. Solve
$$\frac{dx}{z^2y} = \frac{dy}{z^2x} = \frac{dz}{xy^2}$$
.

- Define partial differential equation with example.
- 6. Form the Partial Differential equation from $x^2 + y^2 = (z c)^2 \tan^2 \alpha$.
- 7. Solve $p \tan x + q \tan y = \tan z$.
- 8. Solve $\sqrt{p} + \sqrt{q} = x + y$.
- 9. Find the complete integral of the equation $(px + qy z)^2 = 1 + p^2 + q^2$.
- Write Charpit's Auxilliary equation.

PART-B

A

VII

II. Answer any FIVE of the following questions.

11. Solve
$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} - \frac{1}{x^2}y = 0$$
 given that $x + \frac{1}{x}$ is a solution.

- 12. Solve $\cos x \frac{d^2y}{dx^2} + \sin x \frac{dy}{dx} 2y \cos^3 x = 2\cos^3 x$ by changing the independent variable.
- III. 13. Solve $x^2y_2 + xy_1 y = x^2e^x$, x > 0 by the method of variation of parameters
 - 14. Write a necessary and sufficient condition for the equation $a_0 \frac{d^2 y}{dx^2} + a_1 \frac{dy}{dx} + a_2 y = f(x)$ to be exact, if $\frac{d^2 a_0}{dx^2} \frac{d a_1}{dx} + a_2 = 0$, here $a_0 a_2 a_3 a_4$ are functions of x.
- IV 15. Verify the condition for integrability and $3x^2dx + 3y^2dy (x^3 + y^3 + e^{2z})dz = 0$

, 16. Solve
$$\frac{dx}{x^2 + y^2 + yz} = \frac{dy}{x^2 + y^2 - zx} = \frac{dz}{z(x+y)}$$

- V. 17. Verify the condition for integrability and solve $(y^2 + yz)dx + (xz + z^2)dy + (y^2 xy)dz = 0$
 - 18. Solve the simultaneous equation $\frac{dx}{mz ny} = \frac{dy}{nx lz} = \frac{dz}{ly + mx}$

- 19. Form the partial differential equation by the method of elimination of arbitrary, functions f and g in $Z = \frac{1}{y} [f(x+ay) + g(x-ay)]$.
 - 20. Solve i) $p^2q^3 = 1$

ii)
$$p^2 - q^2 = 1$$
.

- AL 11. Solve $x^2p^2 + y^2q^2 = z^2$.
 - 22. Solve $4(1+Z^3) = 9Z^4pq$.
- VIII. 23. Find the complete integral of px + qy = pq by Charpit's method.
 - 24. Find the complete integral of $(p^2 + q^2)y = qz$ by Charpit's method.

B.Sc. V Semester Degree Examination, February/March - 2023 MATHEMATICS (New)

Series Solution, Improper Integrals and Vector Analysis

Paper: 5.3

Time: 3 Hours

Maximum Marks: 80

PART-A

Answer the following questions.

- Using generating function, Prove that $P'_n(1) = \frac{1}{2}n(n+1)$. 1)
- Prove that $J \frac{1}{2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$.
- Prove that $\mu(n+1) = n!$ 3)
- Using generating function show that $P_n(1) = 1$. 4)
- Show that $\int_0^\infty e^{-x^2} dx = \frac{1}{2} \sqrt{\pi}$. 5)
- Show that $\beta(m,n) = 2 \int_0^{\pi/2} s \ln^{2m-1} \theta \cos^{2n-1} d\theta$. 6)
- Find the directional derivatives of the function 7) $f(x,y,z) = xy^2 + yz^3$ at (2,-1,1) in direction of 2i + j + 2k.
- Define Divergence and curl of a vector point function. 8)
- If f = 2xi + 3yj + 4zk and $\oint = xy^2z^3$, find $f \cdot \nabla \oint$ and $\nabla |f|^2$. 9)
- Show that curl (grad f) = 0 If $f = x^2y + 2xy + z^2$.

PART-B

Answer the FIVE of the following questions.

II. 11) With usual notation derive the Rodrigue's formula.

(2) Prove that
$$\int_{-1}^{1} P_{m}(x) . P_{n}(x) dx = 0$$
, if $m \neq n$

III. 13) Show that n
$$P_n(x) = x P_n'(x) - P_{n-1}'(x)$$

14) Show that
$$\int_0^1 P_{2\kappa}(x) dx = 0$$
.

IV. 15) Prove that
$$J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \left\{ \frac{3 - x^2}{x^2} s \ln x - \frac{3}{x} c \cos x \right\}$$

16) For recurrence relation show that,
$$\frac{d}{dx} [x^n J_n(x)] = x^n J_{n-1}(x)$$
.

V. 17) Show that
$$\int_{0}^{\pi/2} \sqrt{\sin\theta} d\theta \cdot \int_{0}^{\pi/2} \frac{1}{\sqrt{\sin\theta}} d\theta = \pi$$

18) Prove that
$$\beta(m,n) = \frac{\mu(m)\mu(n)}{\mu(m+n)}$$

VL 19) Show that
$$\int_0^1 \frac{dx}{\sqrt{3x-x^2}} = \pi$$
.

20) Show that
$$\int_0^1 x^m \left(\log \frac{1}{x} \right)^n dx = \frac{\mu(n+1)}{(m+1)^{n+1}}$$
.

(3)

- If r = |r|, where r = xi + yj + zk then show that, $b \cdot \nabla \left[a, \nabla \left(\frac{1}{r} \right) \right] = \frac{3(ar)(br)}{r^5} \frac{ab}{r^3}$ where a and b are two constants.
 - 22) Show that $\nabla \left[r \nabla \left(\frac{1}{r^3} \right) \right] = \frac{3}{r^4}$, where $r^2 = x^2 + y^2 + z^2$.
- (III 23) Find the angle between the normal to the surface $xy = z^2$ at the point (1.9,-3) and (-2,-2,2)
 - Find the unit normal vector of the point (1,-1,2) to the surface $x^2y + y^2z + z^2x = 5$.

B.Sc. V Semester Degree Examination, February/March 2022 MATHEMATICS (New)

5.1 : Fourier Series, Laplace Transforms and Linear Transformation

Time: 3 Hours

Max. Marks: 80

Instructions: 1) Part - A is compulsory.

2) Part - B solve any five questions.

PART - A

Answer the following questions:

 $(10 \times 2 = 20)$

I. 1) If $f(x) = e^x$, $-\pi < x < \pi$, find the Fourier co-efficient a_n .

- 2) Find the Fourier co-efficient b_n if $f(x) = x^2$ is $x \in [-\pi, \pi]$.
- 3) Show that $L\{af(t) + bg(t)\} = aL\{f(t)\} + bL\{g(t)\}.$
- 4) Evaluate $L\{t^3 + 3t^2 6t + 8\}$.
- 5) Evaluate $L^{-1} \left\{ \frac{1}{(s-4)^3} \right\}$.
- 6) Verify convolution theorem for f(t) = 1, g(t) = sint.
- 7) Define linear transformation and linear map.
- 8) Find the linear transformation $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that f(1, 0) = (1, 1) and f(0, 1) = (-1, 2).
- 9) Find the matrix of the linear transformation. $T: V_2(R) \to V_3(R)$ defined by T(x, y) = (x + y, x, 3x y) w.r.t. a standard bases.
- 10) Define rank, nullity of a linear transformation.

PART - B

Answer any five of the following:

 $(12 \times 5 = 60)$

- II. 11) Find the Fourier series for the periodic function f(x) with period 2I. Where f(x) = |x|. -1 < x < 1.
 - 12) Find the half range sine series of f(x) = x, $0 \le x \le 1$.
- III. 13) Obtain the Fourier series of $f(x) = \begin{cases} x & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ \pi x & \frac{\pi}{2} \le x \le \frac{3\pi}{2} \end{cases}$
 - 14) Evaluate $L^{-1} \left\{ \frac{3s^2 + 16s + 26}{s(s^2 + 4s + 13)} \right\}$.
- IV. 15) If L{f(t)} = F(s) then prove that L{tⁿf(t)} = $(-1)^n \frac{d^nF(s)}{ds^n}$.
 - 16) Using convolution theorem find the inverse transform of $\frac{s}{\left(s^2+a^2\right)^2}$.
- V. 17) Find the laplace transforms of the function $f(t) = \begin{cases} E & \text{for } 0 \le t \le \frac{T}{2} \\ -E & \text{for } \frac{T}{2} \le t \le T \end{cases}$ and f(t+T) = f(t).
 - 18) Find the Laplace transform of the function $\frac{2\sin 2t \sin 5t}{t}$
- VI. 19) Find the matrix of the linear transformation $T: V_2(R) \to V_3(R)$ defined by T(x, y) = (2y x, y, 3y 3x) relative to bases $B_1 = \{(1, 1), (-1, 1)\}$ and $B_2 = \{(1, 1, 1), (1, -1, 1), (0, 0, 1)\}$.
 - 20) Prove that if T : $u \rightarrow v$ is linear transformation then
 - a) T(0) = 0' where 0 and 0' are zero vectors of u and v respectively
 - b) $T(-\alpha) = -T(\alpha), \forall \alpha \in \mu$
 - c) $T(C_1 \alpha_1 + C_2 \alpha_2 + ... + C_n \alpha_n) = C_1 T(\alpha_1) + C_2 T(\alpha_2) + C_3 T(\alpha_3) + ... + C_n T(\alpha_n)$.

- VII. 21) Let $T:V\to W$ be a linear transformation and V be a finite demensional vector space then $\gamma(T)+\eta(T)=d(V)$.
 - 22) If T is a linear transformation from $V_3(R)$ into $V_4(R)$ defined by T(1, 0, 0) = (0, 1, 0, 2). T (0, 1, 0) = (0, 1, 1, 0), T (0, 0, 1) = (0, 1, -1, 4). Find the range, null space, nullity of T.
- VIII. 23) For the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ find the corresponding linear transformation

 $T: R^2 \to R^2$ w.r.t. the basis $\{(1, 0), (1, 1)\}.$

24) If T is mapping from $V_2(R)$ in to $V_2(R)$ defined by $T(x, y) = [x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta]$. Show that T is linear transformation.

B.Sc. V Semester Degree Examination, September/October 2022 MATHEMATICS

Paper - 5.2 : Differential Equations (New)

Time: 3 Hours Max. Marks: 80

Instructions: 1) Part - A: All questions are compulsory.

2) Part – B: Solve any five questions from seven questions (Each question carries equal marks).

PART - A

I. Answer the following questions.

(10×2=20)

- 1) Find the part of C.F. of the equation (1-x)y'' + xy' y = 0.
- 2) Find the Wronskian equation for the equation $\frac{d^2y}{dx^2} y = \frac{2}{1 + e^x}$.
- 3) Verify the condition for integrability (y + z) dx + (z + x) dy + (x + y) dz = 0.
- 4) Solve $\frac{dx}{z^2y} = \frac{dy}{z^2x} = \frac{dz}{xy^2}$.
- 5) Solve $\frac{dx}{z} = \frac{dy}{-z} = \frac{dz}{z^2 + (x + y)^2}$.
- 6) Define total differential equation.
- 7) From the partial differential equation from z = (x + a) (y + b).
- 8) Solve zp + qy = x.
- 9) Solve $p = e^q$.
- 10) Solve $px + qy + p^2 + q^2$.

PART - B

Answer any five of the following questions.

 $(5 \times 12 = 60)$

- II. 11) Solve $x^2y'' + xy' y = 2x^2$, (x > 0) given that $\frac{1}{x}$ is a part of C.F.
 - 12) Solve by the method of variable of parameters of the equation $\frac{d^2y}{dx^2} + y = cosecx \, .$

- III. 13) Show that $(1 + x^2) \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = \sec^2 x$ is exact and solve it.
 - 14) By changing dependent variable, solve $\frac{d^2y}{dx^2} \frac{2}{x} \frac{dy}{dx} + \left(1 + \frac{2}{x^2}\right)y = xe^x$.
- IV. 15) Verify the condition for integrability and solve $z^2 dx + (z^2 2yz) dy + (2y^2 yz zx) dz = 0$.
 - 16) Solve $\frac{dx}{x^2 + y^2 + yz} = \frac{dy}{x^2 + y^2 zx} = \frac{dz}{z(x + y)}$.
- V. 17) Verify the condition for integrability and solve $(2x^2 + 2xy + 2xz^2 + 1) dx + dy + 2zdz = 0$
 - 18) Solve $\frac{dx}{mz ny} = \frac{dy}{nx lz} = \frac{dz}{ly mx}$.
- VI. 19) Solve $(bz cy) \frac{\partial z}{\partial x} + (cx az) \frac{\partial z}{\partial y} = ay bx$. In not not below off vine V (6)
 - 20) Solve z(p + q) = tanx + tany.
- VII. 21) Solve $z^2(p^2x^2 + q^2) = 1$.
 - 22) Solve $z(p^2 q^2) = x y$.
- VIII. 23) Find the complete integral of px + qy = pq by Charpits method.
 - 24) Find the complete integral of $p^2 + q^2 2px 2qy + 2xy = 0$ by Charpits method.

B.Sc. V Semester Degree Examination, September/October 2022 MATHEMATICS

Paper – 5.3 (New) : Series Solution, Improper Integrals and Vector Analysis

Time: 3 Hours

Max. Marks: 80

Instructions: 1) Part - A: All questions are compulsory.

2) Part – **B**: Solve **any five** from seven questions. **Each** question carries **equal** marks.

PART - A

I. Answer the following questions.

- 1) Show that $P_n(1) = 1$.
- 2) Using generating function for Legendre's polynomial P_n(x), prove that

$$P'_{n}(1) = \frac{1}{2}n(n+1).$$

- 3) Prove that $\int_{0}^{\infty} e^{-x^2} dx = \frac{1}{2} \sqrt{\pi}$.
- 4) Show that $\beta(p, q) = \beta(q, p)$.
- 5) Evaluate $\int\limits_0^\infty e^{-t^2} \sqrt{t^3} dt$.
- 6) Show that $\beta(m, n) = 2 \int_{0}^{\pi/2} \sin \theta^{2m-1} \cos \theta^{2n-1} d\theta$.
- 7) Find the maximal directional derivative of $x^2y + yz^2 xz^3$ at (-1, 2, 1).
- 8) Define Divergence and curl of a vector point function.
- 9) State the Green's theorem.
- 10) If $f = 2x\hat{i} + 3y\hat{j} + 4\hat{k}$ and $\oint xy^2z^3$. Find $f.\nabla \varphi$ and $\nabla |f|^2$.

PART - B

Answer any five of the following questions.

(5×12=60)

II. 11) Prove that
$$\int\limits_0^1 x \ J_n(\alpha x). \ J_n(\beta x) \ dx = \begin{cases} 0 & \text{If } \alpha = \beta \\ \frac{1}{2} [J_{n+1}(x)]^2 & \text{If } \alpha \neq \beta \end{cases}.$$

- 12) Express $J_4(x)$ interms of $J_0(x)$ and $J_1(x)$.
- III. 13) Derive the Rodrigue's formula.
 - 14) Prove that $\int_{-1}^{1} P_m(x) P_n(x) dx = 0$, if $m \neq n$.
- IV. 15) Show that $\beta(m,n) = \frac{\lceil (m) \rceil \lceil (n) \rceil}{\lceil (m+n) \rceil}$, m > 0, n > 0.
 - 16) Show that, $J_{\frac{5}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left[\frac{3 x^2}{x^2} \sin x \frac{3}{x} \cos x \right].$
- V. 17) Express $\int_{0}^{1} x^{3} (1-x^{2})^{\frac{5}{2}} dx$ interms of Beta function.
 - 18) Show that $\sqrt{\frac{1}{2}} = \sqrt{\pi}$.
- VI. 19) Show that $\int_{0}^{\frac{\pi}{2}} \sqrt{\tan \theta} \ d\theta = \frac{\pi}{\sqrt{2}}.$
 - 20) Show that $\int_{0}^{\infty} \frac{x^{4}(1+x^{5})}{(1+x)^{15}} = \frac{1}{5005}.$
- VII. 21) Show that $f = (\sin y + z) i + (x \cos y z) j + (x y)k$ is irrotational, find the function \oint such that $f = \nabla \oint$.
 - 22) If \vec{r} represent the position vector of a point P, then show that, 1) $div \vec{r} = 3$. 2) $curl \vec{r} = 0$.
- VIII. 23) Prove that $\operatorname{curl} \left(\oint f \right) = \oint \operatorname{curl} f + \left(\operatorname{grad} \oint \right) \times f$.
 - 24) Find the angle between the normal to the surface $xy = z^2$ at the points (1, 9, -3) and (-2, -2, 2).

B.Sc. V Semester Degree Examination, September/October 2022 MATHEMATICS

Paper - 5.1: Vector Calculus and Laplace Transform (Old)

Time: 3 Hours

Max. Marks: 80

Instructions: 1) Answer all the Parts.

2) Non-programmable scientific calculator may be used.

PART - A

Answer any ten questions.

- 1. Find the directional derivative of $f(x, y, z) = xy^2 + yz^3$ at the point (2, -1, 1) in the direction of vector i + 2j + 2k.
- 2. Find the ϕ such that $\nabla \phi = y^2 z^3 i + 2xyz^3 j + 3xy^2 z^2 k$.
- 3. If \overline{f} and \overline{g} are irrotational, show that $\overline{f} \times \overline{g}$ is solenoidal.
- 4. State Stokes theorem in vector form.
- 5. Find the Fourier coefficient a_0 for the function $f(x) = x x^2$; $x = -\pi$ to π .
- 6. Find the Fourier coefficient a_n if f(x) = |x| where $x = -\pi$ to π .
- 7. If $f(x) = x^2$ in $[0, \pi]$, find the Fourier coefficient b_n .
- 8. Evaluate L[coshat cosat].
- 9. Evaluate L[e2t sin3t].
- 10. Verify convolution theorem for the functions f(t) = t and g(t) = t.
- 11. Find inverse Laplace transform of $\frac{s+3}{s^2+9}$.
- 12. State convolution theorem.

PART - B

Answer any five questions.

 $(5 \times 6 = 30)$

- 13. Find the angle between the normal to the surface $xy z^2 = 0$ at the point (1, 9, -3) and (-2, -2, 2).
- 14. Prove that $\operatorname{div}(\overline{f} \times \overline{g}) = \overline{g} \operatorname{curl} \overline{f} \overline{f} \operatorname{curl} \overline{g}$.
- 15. Evaluate by using Stokes theorem $\oint_C (\sin z dx \cos x dy + \sin y dz)$ where C is the boundary of rectangle $0 \le x \le \pi$, $0 \le y \le 1$, z = 3.
- 16. Obtain the Fourier series for $f(x) = e^{-x}$; $0 < x < 2\pi$.
- 17. Obtain the half-range sine series for f(x) = x; $0 < x < \pi$.
- 18. Find the half-range cosine series for f(x) = 2x 1 in 0 < x < 1.

Answer any five questions.

onelce at g x 1 tant world (Isnoitstoni ats a nits

- 19. Evaluate $L\left[\frac{\cos 3t \cos 2t}{t}\right]$.
- 20. Evaluate:
 - i) L[sin²t]
 - ii) L[e2t cos3t].
- 21. Evaluate $L^{-1} \left[\frac{s+3}{(s^2+6s+13)^2} \right]$.
- 22. Evaluate $L^{-1}\left[\frac{1}{s(s+2)(s+3)}\right]$.
- 23. Solve y'' + 2y' + 17y = 0 using Laplace transformation given y(0) = 0 and y'(0) = 12.
- 24. Solve $y'' 9y = -8e^t$ given that y(0) = 0 and y'(0) = 0.

B.Sc. V Semester Degree Examination, September/October 2022 MATHEMATICS

Paper – 5.2 (Old): Series Solution, Total Differential Equations and Partial Differential Equation

Time: 3 Hours

Max. Marks: 80

Instructions:

1) Answer all the questions.

2) Mention the question number carefully.

SECTION - A

I. Answer any ten of the following.

 $(2 \times 10 = 20)$

- 1) Show that $P_n(-x) = (-1)^n P_n(x)$ by using generating function of Legendre polynomial.
- 2) Write the generating function for $J_n(x)$.

3) P.T.
$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}}$$
 Sinx.

- 4) Show that $J_0'(x) = -J_1(x)$.
- 5) Using Rodrigues formula for the Legendre polynomial $P_n(x)$, find $P_n(1)$.
- 6) Verify the condition for integrability for the (y + z) dx + (z + x) dy + (x + y) dz = 0.
- 7) Solve the simultaneous equations $\frac{dx}{y^2} = \frac{dy}{x^2} = \frac{dz}{x^2yz^2}$.
- 8) Form the partial differential equation from $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.
- 9) Solve $p^2 + q^2 = 1$.
- Solve Lagranges linear equation p tanx + q tany.
- 11) Solve z = px + py + log pq.
- 12) Write down the Charpitz auxillary equation.

SECTION - B

II. Answer any five of the following.

 $(5 \times 6 = 30)$

- 13) Prove that $\frac{d}{dx}[x^{-n}J_n(x)] = -x^{-n}J_{n+1}(x)$.
- 14) Show that $J_{\frac{5}{2}}(x) = -\sqrt{\frac{2}{\pi x}} \left[\frac{(3-x)^2 \sin x}{x^2} \frac{3\cos x}{x} \right].$
- 15) S.T.
 - i) $\cos(x \sin \theta) = J_0 2 \cos 2\theta J_2 + 2 \cos 4\theta J_4 + \dots$
 - ii) $\sin(x \sin\theta) = 2 \sin\theta J_1 + 2 \sin3\theta J_3 + \dots$ using the generating function of Bessels function $J_n(x)$.
- 16) Verify the condition for integrability and solve the equation (yz + 2x) dx + (zx 2z) dy + (xy 2y) dz = 0.
- 17) Verify the condition for integrability and solve the equation $3x^2dx + 3y^2dy (x^3 + y^3 + e^{2z}) dz = 0$.
- 18) Solve $\frac{dx}{mn(y-z)} = \frac{dy}{nl(z-x)} = \frac{dz}{lm(x-y)}.$
- 19) Solve $\frac{dx}{x(y-z)} = \frac{dy}{y(z-x)} = \frac{dz}{z(x-y)}.$

0 = xb(v + x) = yb(x + x) + xb(SECTION - C) denoting to incline or entitle V

III. Answer any five of the following.

 $(5 \times 6 = 30)$

- 20) Form a partial differential equation by the method of elimination of arbitrary function from z = f(x + ay) + g(x ay).
- 21) Solve $x^2p + y^2q = z^2$ by Lagrange's method.
- 22) Solve (i) pq = p + q (ii) $p^2q^2 = 1$.
- 23) Solve $p(1 + q^2) = q(z a)$.
- 24) Solve $p^2 = z^2 (a q^2)$.
- 25) Solve pxy + pq + qy yz = 0 by Charpitz method.
- 26) Find the complete integral of $p^2x + q^2y = z$ by Charpitz method.

B.Sc. V Semester Degree Examination, Sept./Oct. 2022 MATHEMATICS

Paper - 5.3 (b) Old: Theory of Graph - I

Time: 3 Hours

Max. Marks: 80

Instructions: 1) Answer the questions Section wise.

2) Write question number correctly.

SECTION - A

Answer any ten of the following.

(10×2=20)

- 1. Define multiple graph and pseudograph with example.
- 2. Define degree of a vertex and isolated vertex.
- 3. Define regular graph. Prove that if G is regular, then $\bar{\mathsf{G}}$ is regular.
- 4. Define line graph with example.
- Find all spanning subgraph of K₃.
- 6. If G is a graph with $\delta(G) \ge K$, then G has a path of length K.
- 7. Show that every disconnected graph has atleast two components.
- 8. Draw complete bipartite graphs $K_{1,3}$ and $K_{2,2}$.
- Define binary matrix.
- 10. Find the incidence matrix of the graph G in fig. (1)

- 11. Define adjacency matrix.
- 12. Define cycle matrix.

SECTION - B

Answer any five of the following.

(5×6=30)

- 13. Show that the number of edges of an r-regular graph with p vertices in $q = \frac{pr}{2}$.
- 14. Draw two different self-complementary graphs with 5 vertices.
- 15. Find the graphs L(G), L²(G) and T(L²(G)) where G is shown below

$$e_1 \quad e_2 \quad e_3$$
 G:

16. Find all spanning subgraphs of the following graph G.

- 17. Define walk, path and cycle. Prove that every u-v walk contains a u-v path.
- 18. Let G be a graph with p vertices and q edges. If G is bipartite, then show that $q \le \frac{p^2}{4}$.

SECTION - C

Answer any five of the following.

(5×6=30)

- Show that a connected graph G is isomorphic to its line graph L(G) if and only if G is a cycle.
- 20. Prove that a graph G with P vertices and $\delta \ge \frac{p-1}{2}$ is connected.
- 21. Draw a self complementary graph with 5 vertices and find its incidence matrix.

22. Find the graph G whose incidence matrix is

23. By incidence matrix, show that the graph $\rm G_1$ and $\rm G_2$ shown below are isomorphic.

24. Draw $K_{_{\! 5}}$ and find its adjacency matrix.

B.Sc. V Semester Degree Examination, March - 2021 MATHEMATICS

Fourier Series, Laplace Transform, Linear Transformation Paper: 5.1 (a)

(New)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates: Answer All the sections.

SECTION - A

Answer the following questions,

- I. 1. Find the Fourier coefficient a_0 for $f(x) = x x^2$ from $x = -\pi$ to π
 - 2. Find the Fourier coefficient a_n if f(x) = |x| where $-\pi < x < \pi$
 - 3. Show that $L[e^{at}] = \frac{1}{s-a}$
 - 4. Evaluate $L[e^{2t}\sin 4t]$
 - 5. Evaluate $L^{-1}\left[\frac{s+a}{s^2+a^2}\right]$
 - 6. Verify convolution theorem for f(t) = t and g(t) = e'.
 - 7. Find the linear transformation $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that f(1,0) = (1,1) and f(0,1) = (-1,2)
 - 8. If $T: v_1(R) \to v_3(R)$ defined by $T(x) = (x, x^2, x^3)$ verify whether T is linear or not.
 - 9. If $T: v_2(R) \rightarrow v_2(R)$ defined by T(x, y) = (2x 3y + y) compute the matrix to the basis $B = \{(1, 2), (2, 3)\}$
 - 10. Define range and kernel of a linear transformation.

SECTION - B

(5×12=

Answer any Five of the following.

II. II. Obtain the Fourier series of
$$f(x) = \begin{cases} 1 & \text{is } -M_2 < x < M_2 \\ -1 & \text{is } M_2 < x < \frac{3\pi}{2} \end{cases}$$

12. Find the half-range sine series of $f(x) = x^2$ is $0 < x < \pi$.

III. 13. Find the cosine half - range series of $f(x) = x \sin x$ is $0 < x < \pi$.

14. Find the laplace transform of $\left[\frac{\cos 2t - \cos 3t}{t}\right]$.

IV. 15. If L[f(t)] = F(s) then prove that $L[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} f(s)$

16. Evaluate $L^{-1}\left[\frac{1}{s^2-4s+13}\right]$

V. 17. Solve y'' + 9y = 0 given y(0) = 0 y'(0) = 2 using laplace transformations.

18. Solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 17y = 0$ using laplace transform given y(0)=0 y'(0)=1

VI. 19. If T is a mapping from $v_2(K)$ into $v_2(R)$ defined by $T(x,y) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$ show that T is a linear transform

20. If $T:U \to V$ is a linear transformation, then.

- a) T(0) = 0' where 0 and 0' are zero vectors of W and V respectively.
- b) $T(-\alpha) = -T(\alpha) \forall \alpha \in \cup$.
- c) $T(c_1 \alpha_1 + c_2 \alpha_2 + \dots + c_n \alpha_n) = c_1 T(\alpha_1) + c_2 T(\alpha_2) + \dots + c_n T(\alpha_n)$

1. 21. If $T: v_3(R) \rightarrow v_2(R)$ defined by T(x, y, z) = (2x + y - z, 3x - 2y + 4z) relative to basis.

$$B_1 = \{(1,1,1),(1,1,0),(1,0,0)\}$$

$$B_2 = \{(1,3),(1,4)\}$$

- 22. If $B = \{x_1, x_2, ..., x_n\}$ be a basis of vector space V (f) and T be a linear transformation on V. Then prove for any vector $x \in v[T,B][x,B] = [T(x),B]$.
- II. 23. State and prove Rank-Nullity theorem.
 - 24. If T is a linear transformation from $v_3(R)$ into $v_4(R)$ define by

$$T(1,0,0) = (0,1,0,2)$$

$$T(0,1,0) = (0,1,1,0)$$

T(0,0,1) = (0,1,-1,4) then find the range, null space, rank and nullity of T.

B.Sc. V Semester Degree Examination, March - 2021

MATHEMATICS

Differential Equations

Paper: 5.2

(New)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- Part A All questions are compulsory.
- Part B Solve any Five questions from Seven questions (Each question carries equal marks).

PART - A

Answer the following questions.

- 1) Find the part of C.F of the equation $x^2 \frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} y = e^x$.
- 2) Find the Wronskian equation for the equation $\frac{d^2y}{dx^2} + y = \sec x$.
- 3) Verify the condition for integrability $(2x^2 + 2xy + 2xz^2 + 1)dx + dy + 2zdz = 0$.
- 4) Solve $\frac{dx}{z} = \frac{dy}{-z} = \frac{dz}{z^2 + (x+y)^2}.$
- 5) Write the condition for integrability of single differential equation.
- Define total differential equation.
- 7) Form the partial differential equation from $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.
- 8) Solve zp+qy=x.
- 9) Solve $p+q=\sin x+\sin y$.
- 10) Solve $z = px + qy + p^2 + q^2$.

Answer any Five of the following questions.

(5×12.

Answer any Tive of Answer any Tive of Answer any Tive of
$$\frac{d^2y}{dx^2} + (2\cos x + \tan x)\frac{dy}{dx} + y\cos^2 x = \cos^4 x$$
 by change of $\inf_{e \to e_{hd_e}} \exp(-\frac{x^2y}{dx^2} + 2\frac{dy}{dx})$ variable.

12) By changing dependent variable solve $\frac{d^2y}{dx^2} - \frac{2}{x}\frac{dy}{dx} + \left(1 + \frac{2}{x^2}\right)y = xe^x$

III. 13) Solve
$$(1-x)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = (1-x)^2, x \ne 1$$
 by method of variation of parameter $(1-x)^2$

14) Show that the equation $(1+x^2)\frac{d^2y}{dx^2} + 4x\frac{dy}{dx} + 2y = \sec^2 x$ is exact and solve it.

IV. 15) Verify the condition for integrability and solve. $z^2 dx + (z^2 - 2yz) dy + (2y^2 - yz - zx) dz = 0.$

16) Solve
$$\frac{dx}{x^2 + y^2 - z^2} = \frac{dy}{2xy} = \frac{dz}{2xz}$$
.

V. 17) Verify the condition for intergrability and solve $3x^2dx + 3y^2dy - (x^3 + y^3 + e^{2z})dz = 0$

18) Solve
$$\frac{dx}{x^2 + yz + z^2} = \frac{dy}{z^2 + zx + x^2} = \frac{dz}{x^2 + xy + y^2}$$
.

VI. 19) Solve
$$(bz-cy)\frac{\partial z}{\partial x} + (cx-az)\frac{\partial z}{\partial y} = ay-bx$$
.

20) Solve
$$z^2(p^2x^2+q^2)=1$$
.

VII. 21) Solve i)
$$p(1+q^2) = q(z-a)$$

ii) $p(1+q)=2q$.

22) Solve
$$(p^2 - q^2)z = x - y$$
.

VIII.23) Find the complete integral of px + qy = pq by Charpit's method.

24) Find the complete integral of $p^2x + q^2y = z$ by Charpits method.

B.Sc. V Semester Degree Examination, March - 2021 MATHEMATICS

Series Solution, Improper Integrals and Vector Analysis

Paper: 5.3 (a)

(New)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1) PART-A All questions are Compulsory.
- PART-B Solve any Five questions from Seven questions (Each question carries equal marks).

PART - A

I. Answer the following questions.

- 1) Using generating function for Legendre's polynomial p_n , prove that $p'_n(1) = \frac{1}{2}n(n+1).$
- 2) From the recurrence relation prove that $J_n(x) = \frac{x}{2n} [J_{n-1}(x) + J_{n+1}(x)].$

3) Prove that
$$\int_{0}^{\infty} e^{-x^2} dx = \frac{1}{2} \sqrt{\pi}$$
.

- 4) Prove that $\beta(m,n) = \beta(n,m)$.
- 5) Evaluate $\frac{\sqrt{7}}{2\sqrt{4}\sqrt{3}}$.
- 6) Using Gamma function evaluate $\int_{0}^{\infty} x^{3}e^{-x}dx$

- 7) Find the directional derivatives of the function $\oint (x, y, z) = xy^2 + yz^3$ (2,-1,1) in the direction of 2i+j+2k.
- Define Divergence and curl of a vector print function.
- If $f = 2x\hat{i} + 3y\hat{j} + 4\hat{k}$ and $\oint = xy^2z^3$. Find $f \cdot \nabla \phi$ and $\nabla |f|^2$.
- 10) Show that curl(grad f) = 0 Where $f = x^2y + 2xy + z^2$.

PART - B

Answer any Five of the following questions.

(5×12=

- 11) With usual notation prove that $np_n(x) = x \cdot p'_n(x) p'_{n-1}(x)$ 11.
 - 12) Deduce from Rodrigue formula $\int_{1}^{1} f(x) p_{n}(x) dx = \frac{(-1)^{n}}{2^{n} n!} \int_{1}^{1} (x^{2} 1) f^{(n)}(x)$
- III. 13) Show that $\int J_3(x) dx = -J_2(x) \frac{-2}{x} J_1(x)$
 - 14) Prove that

(i)
$$J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$
.

(ii)
$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$
.

- IV. 15) Express $J_4(x)$ in terms of J_0 and J_1 .
 - 16) Show that $\beta(m,n) = \frac{\sqrt{(m)\sqrt{(n)}}}{\sqrt{(m+n)}}$, where m>0, n>0.
- V. 17) Express $\int_{0}^{1} x^{3} (1-x^{2})^{\frac{3}{2}} dx$ in terms of Beta function.
 - 18) Prove that $\sqrt{(\frac{1}{2})} = \sqrt{\pi}$.

- TI. 19) Show that $\int_{0}^{1} \frac{x^{2}}{(1-x^{4})^{\frac{1}{2}}} dx \int_{0}^{1} \frac{dx}{(1+x^{4})^{\frac{1}{2}}} = \frac{\pi}{4\sqrt{2}}.$
 - 20) Prove that $\int_{0}^{\frac{\pi}{2}} \sqrt{\tan \theta} \ d\theta = \frac{\pi}{\sqrt{2}}.$
- II.21) Show that $f = (\sin y + z)i + (x\cos y z)j + (x y)k$ is irrotational find the function \oint such that $f = \nabla \oint$.
 - 22) If \overrightarrow{r} represent the position vector of a print p, then show that
 - (i) $\operatorname{div} r = 3$.
 - (ii) $\operatorname{curl} r = 0$.
- II.23) Prove that $div(f \times g) = g \text{ curl } f f \text{ curl } g$. i.e $\nabla \cdot (f \times g) = g(\nabla \times f) f \cdot (\nabla \times g)$.
- Evaluate by Green's theorem for $\oint_c [(xy+y^2)dx + x^2dy]$ where 'C' is the closed curve of the origin bounded by y=x and $y=x^2$.

B.Sc. V Semester Degree Examination, March - 2021 MATHEMATICS

Laplace Transform, Vector Calculus, Fourier Series

Paper : 5.1

(Old)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

Answer all the parts.

PART - A

Answer any TEN questions.

- 1. Find the normal directional derivative of $(x^3 + yz)$ at the point (-3,1,-2).
- 2. Find ϕ such that $\nabla \phi = y^2 z^3 i + 2xyz^3 j + 3xy^2 z^2 k$ given $\phi(x, y, z) = 0$ at the point.
- 3. Show that the vector field $f = (6xy+z^3)i+(3x^2-z)j+(3xz^2-y)k$ is irrotational.
- 4. State Stoke's theorem in the vector form.
- 5. Find the Fourier coefficient a_0 if $f(x) = x^2$; $x \in [-\pi, \pi]$.
- 6. Find the Fourier coefficient a_n if f(x) = |x| where -l < x < l.
- 7. If f(x) = x in $[0, \pi]$ find the Fourier coefficient b_n .
- 8. Evaluate: $L[\sin^3 2t]$.
- 9. Evaluate: $L[e^{-2t}(\sin 2t \cos 3t)]$.
- 10. Verify Convolution theorem for the function f(t) = 1, $g(t) = \cos t$.
- 11. Find the inverse Laplace transform of $\frac{s+2}{s^2+4}$.
- 12. State Convolution theorem.

PART - B

Answer any FIVE questions.

 $(5 \times 6 = 30)$

- 13. Find the angle between the normal to the surface $xy z^2 = 0$ at the point (1, 9, -3) & (-2, -2, 2).
- **14.** Prove that $\nabla \times (\nabla \times \overline{f}) = \nabla (\nabla \overline{f}) \nabla^2 \overline{f}$.
- **15.** Evaluate by using Stoke's theorem $\oint \sin z \, dx \cos x \, dy + \sin y \, dz$.
- 16. Obtain the Fourier series of $f(x) = \begin{cases} 1 & is & \frac{-\pi}{2} < x < \frac{\pi}{2} \\ -1 & is & \frac{\pi}{2} < x < \frac{3\pi}{2} \end{cases}$ and $f(x+2\pi) = f(x)$
- 17. Obtain the half-range sine series where $f(x) = \begin{cases} x & is \quad 0 < x < \frac{\pi}{8} \\ \frac{\pi}{4} x & is \quad \frac{\pi}{8} < x < \frac{\pi}{4} \end{cases}$
- 18. Find the half-range cosine series for the function f(x) = 2x 1 is 0 < x < 1.

PART - C

Answer any FIVE questions.

 $(5 \times 6 = 30)$

- 19. Find the Laplace transform of the following.
 - a) $\sin^2 t$.
 - b) $e^{2t}\cos^2 t$.
- **20.** Evaluate: $L\left[\frac{\cos at \cos bt}{t}\right]$
- 21. Express $f(t) = \begin{cases} t & 0 < t \le 2 \\ t^2 & t > 2 \end{cases}$ in terms of unit step function and hence find its Laplace transform.
- 22. Find inverse Laplace transform of $\left[\frac{s}{(s-3)(s^2+4)}\right]$.
- 23. Solve y'' + 2y' + 17y = 0 using Laplace transform given y(0) = 0, y'(0) = 12.
- 24. Solve $\frac{d^2y}{dt^2} 3\frac{dy}{dt} + 2y = e^{3t}$ with conditions y(0) = 0, y'(0) = 0 using Laplace transform.

B.Sc. V Semester Degree Examination, March - 2021 MATHEMATICS Graph Theory - I Paper: 5.3 (b) (Old)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Answer all sections.
- 2. Write the question numbers correctly.

SECTION-A

I. Answer any **Ten** of the following.

- 1. Define a graph and a finite graph with example.
- 2. Define degree of vertex and isolated vertex.
- 3. Define regular graph and show that every cubic graph has an even number of vertices.
- 4. Draw a (5,5) graph and find its complement.
- 5. Prove that a (p, q) graph is a complete graph if and only if $q = \frac{p(p-1)}{2}$
- **6.** Define subgraph and spanning subgraph.
- 7. Find all spanning subgraphs of K₃.
- 8. Define walk, path and cycle with examples.
- 9. Show that every disconnected graph has at least two components.
- 10. Draw complete bipartite graphs $K_{1,3}$ and $K_{2,2}$.
- 11. Find T (P₃) and its incidence Matrix.
- 12. Define adjacency Matrix.

SECTION - B

II. Answer any Five of the following.

 $(5 \times 6 = 30)$

- 13. i) If G is a (p,q) graph with $V = \{v_1, v_2, \dots, v_p\}$ then prove that $\sum_{i=1}^p \deg v_i = 2q$
 - ii) Prove that, in any graph G, the number of vertices of odd degree is even.
- 14. Draw two different cubic graphs with 6 vertices and 9 edges.
- 15. i) Prove that every self complementary graph has 4n or 4n+1.
 - ii) Prove that if G is regular, then \overline{G} is regular.
- 16. Draw the following subgraphs for the graph G shown below.
 - i) G-v
 - ii) G-e and also
 - iii) Draw graph $G+e_1$ where u_1 and u_2 are not adjacent vertices of G and $e_1=u_1u_2$.

17. Give an example of a walk, a trail, a path and a cycle.

- 18. Prove that a graph G with P vertices has more than $\frac{(p-1)(p-2)}{2}$ edges then G is connected.
- 19. Let G be a graph with P vertices and q edges. If G is bipartite, then show that $q \le \frac{p^2}{4}$

SECTION - C

III. Answer any Five of the following.

 $(5 \times 6 = 30)$

- 20. Find the number of vertices and edges in K_{m,n}
- **21.** Prove that a graph G with p vertices and $\delta \ge \frac{p-1}{2}$ is connected.
- 22. Prove that a non trivial graph is bipartite if and only if all of its cycles are even.
- 23. Draw the graph $K_{2,3}$ and find its incidence matrix.
- 24. By incidence matrix, show that the graph G_1 and G_2 shown below are isomorphic.

25. Find the graph G whose adjacency matrix is

0	1	1	1	0	
1	0	1	1	0	
1	1	0	1	1	
1	1	1	0	0	
0	0	1	0	0	

26. Find the cycle matrix of the graph G shown below.

B.Sc. V Semester Degree Examination, Oct./Nov. - 2019

MATHEMATICS

VECTOR ANALYSIS AND LAPLACE TRANSFORMATION

PAPER-5.1

Time: 3 Hours

Maximum Marks:80

Instructions to Candidates:

- 1) Answer All questions.
- 2) Write question numbers correctly.

SECTION - A

I. Answer any Ten questions:

- 1.) Find the directional derivative of the function $\phi(x, y, z) = xy^2 + yz^3$ at (2, -1, 1) the direction of 2i+j+2k.
- 2. Find the unit normal vector to the surface $3x^2+2y^2+4z^2=9$ at (1,-1,1).
- 3. If f = xyi + yzj + zxk, then show that $\nabla^2 f = 0$
- Show that the vector $F = (\sin y + z)\hat{i} + [x\cos y z]\hat{j} + (x y)\hat{k}$ is irrational.
- 5. Prove that the 'Linearity property of Laplace transform.
- 6. Find Laplace transform of $e^{-3t}[2\cos 5t 3\sin 5t]$.
- 7. Find inverse Laplace transform of $\left[\frac{s+1}{s^2+2s-8}\right]$
- 8.) Prove that div.curlf = 0
- 9. Define Fourier series of a function.
- 10. Define even and odd function of x and give an example.

11. Define Fourier series of a function of period 2L

12. Find the Fourier coefficients a_0 and a_n for the function $f(x) = 2x - x^2$ on (0, 2)

SECTION - B

Answer any Five of the following:

- /13. Prove that $\operatorname{curl}(\operatorname{curl} f) = \operatorname{grad}(\operatorname{div} f) \nabla^2 f$
- 14. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, show that $curl(r^n, r) = 0$ where $r = |\vec{r}|$.
- Verify the green's theorem in the plane for $\oint [(xy+y^2)dx+x^2dy]$ where c is the close curve bounded by $y = x & y = x^2$
- Prove that $curl(f \times g) = (divg)f + (g.\nabla)f (divf)g (f.\nabla)g$
- 17. Evaluate by stoke's theorem $\oint yzdx + zxdy + xydz$ where C is the curv $x^2 + y^2 = 1$, $z = y^2$.
- 18. Find the Fourier series of $f(x) = \begin{cases} 1 & \text{for } -\pi/2 < x < \pi/2 \\ -1 & \text{for } \pi/2 < x < 3\pi/2 \end{cases}$ $f(x+2\pi)=f(x).$
- 19. Express f(x) as a half range sine series $f(x) =\begin{cases} \sin x & \text{for } 0 \le x \le \pi/4 \\ \cos x & \text{for } \pi/4 \le x \le \pi/2 \end{cases}$

SECTION - C

III. Answer any Five questions:

(5×6=

- 20. Find the Laplace transform of $f(t) = \frac{kt}{p}$, for 0 < t < p and f(t+p) = f(t).
- 21. State and prove the convolution theorem.

23. Evaluate
$$L^{-1}\left[\frac{s^2}{s^4 + 4a^2}\right]$$
.

24. Verify the convolution theorem for $f(t) = e^t$ and $g(t) = \cos t$

25. Show that by convolution theorem
$$L^{-1} \left[\frac{1}{\left(s^2 + a^2\right)^2} \right] = \frac{1}{2a} \left[\sin at - at \cos at \right]$$

26. Solve by Laplace transform method, $y'' + 2y' + 5y = e^{-t} \sin t$ given y(0) = 0 and y'(0) = 1.

B.Sc. V- Semester Degree Examination, Oct/Nov. - 2019

MATHEMATICS

SERIES SOLUTION TOTAL DIFFERENTIAL EQUATIONS AND PARTIAL DIFFERENTIAL EQUATIONS

PAPER-5.2

(New)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Answer All the sections.
- Mention the question numbers carefully.

SECTION - A

I. Answer any Ten of the following:

- 1. Show that $P_n(-x) = (-1)^n p_n(x)$ by using generating function of Legendre polynomial.
- 2. Using the Rodrigues formula for the legendre polynomial $p_n(x)$, find $p_1(x)$.
- Write the generating function for J_n(x).
- 4. Show that $J \frac{1}{2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$.
- 5. Show that $J_0^1(x) = -J_1(x)$.
- 6. Verify the condition of integrability of the total differential equation (y+z)dx + (z+x)dy + (x+y)dz = 0.
- 7. Solve the simultaneous equations $\frac{dx}{y^2} = \frac{dy}{x^2} = \frac{dz}{x^2 yz^2}$

(5×5)

- Form the partial differential equation from $2z = \frac{x^2}{a^2} + \frac{y^2}{b^3}$. 8.
- Solve $p^2+q^2=1$. 9.
- Solve the $p^2 q^2 = x y$. 10.
- Solve Lagranges linear equation p tanx+q tany = tanz. 11.
- Find the complete integral of $z = px+qy+p^2+q^2$. 12.

SECTION-B

- Answer any five of the following: II.
 - 13. Prove that $\frac{d}{dx} \left[x^n J_n(x) \right] = x^n J_{n-1}(x).$
 - S.T 14.
 - $\cos(x\sin\theta) = J_0 2\cos 2\theta J_2 + 2\cos 4\theta J_4 \dots$
 - ii) $\sin(x\sin\theta) = 2\sin\theta J_1 + 2\sin3\theta J_3 + \dots$ using the generating function of Bessels function J_a(x).
 - 15. Show that $\frac{1-z^2}{(1-2xz+z^2)^{3/2}} = \sum_{n=0}^{\infty} (2n+1)2^n p_n(x).$
 - Verify the condition of integrability and solve the equation yzdx + 2zxdy - 3xydz = 0.
 - Verify the condition for integrability and solve $3x^{2}dx + 3y^{2}dy - (x^{3} + y^{3} + e^{2z})dz = 0.$
 - 18. Solve $\frac{dx}{mn(y-z)} = \frac{dy}{nl(z-x)} = \frac{dz}{lm(x-y)}$

19. Solve
$$\frac{dx}{x^2 - y^2 - z^2} = \frac{dy}{2xy} = \frac{dz}{2xz}$$
.

SECTION-C

III. Answer any Five of the following:

 $(5 \times 6 = 30)$

- 20. Form the partial differential equation whose solution is z = yf(x) + xg(y), f & g are functions.
- 21. Solve $x^2p + y^2q = z^2$ by Lagranges method.
- 22. Solve the following equations

i.
$$pq = p+q$$

- ii. Solve p+q=Sinx+Siny.
- 23. Solve $p(1+q^2)+(b-z)q=0$.
- 24. Solve $z(p^2 q^2) = x^2 y^2$ by using $u = \frac{2}{3}z^{\frac{3}{2}}$.
- 25. Solve pxy + pq + qy yz = 0 by charpits method.
- 26. Solve p + pq q = 0 by charpits method.

B.Sc. V Semester Degree Examination, Oct./Nov. - 2019

MATHEMATICS

GRAPH THEORY - I

PAPER- 5.3 (b)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- Answer All sections.
- Write the question numbers correctly.

SECTION - A

Answer any Ten of the following:

- Define a multiple graph. Give an example.
- Define a totally disconnected graph, with an example which has 5 vertices.
- 3) If G is a (p,q) graph with $V = \{v_1, v_2, v_3, \dots, v_p\}$ then prove that $\sum_{i=1}^p \deg v_i^1 = 2q$.
- 4) Define a complete graph K_p . Draw complete graphs K_3 and K_5 .
- 5) Draw the graphs K_4 and $L(K_4)$.
- 6) What does it mean by Total graph and find $T(K_2)$.
- Define induced subgraph and spanning subgraph.
- 8) Prove that $\overline{K_p}$ is a spanning subgraph of K_p .
- Define a bipartite graph. Draw all complete bipartite graphs with 5 vertices.
- 10) Define a walk, a path and a cycle in a graph.
- 11) Define an incidence matrix.

12) Write the adjacency matrix of following graph G.

SECTION - B

(5×6=30

Answer any five of the following: 11.

- If G be any graph with vertex set V then prove that the number of vertices of odei) 13) degree is even.
 - Show that the number of edges of an r-regular graph with p-vertices is $q = \frac{pr}{2}$ ii)
- 14) Prove that for any graph G with 6 vertices G or \overline{G} contains a triangle.
- Show that a connected graph G is isomorphic to its line graph L(G) if and only 15) G is a cycle.
- 16) Find the total graph of the following graphs

- 17) Prove that every self complementary graph have 4n or 4n+1 vertices.
- 18) Draw the subgraphs of the following given graph G.
 - i) G-v
 - ii) G−e
 - iii) Draw G+e, where u_1 and u_2 are not adjacent vertices of graph G.

19) Draw two different cubic graphs with 6 vertices and 9 edges.

SECTION-C

I. Answer any five questions:

 $(5 \times 6 = 30)$

- 20) Prove that a graph G with p-vertices and $\delta \ge \frac{p-1}{2}$ is connected.
- 21) i) Draw all connected graphs with 4 vertices.
 - ii) If a graph G with p-vertices has more than $\frac{(p-1)(p-2)}{2}$ edges, then prove that G is connected.
- 22) Find the adjacency and incidence matrices of the graph G shown below.

- 23) Draw a self complementary graph with 5 vertices and find its incidence matri
- 24) Find $L(K_{1,1})$ and find its incidence matrix.
- Find the graphs whose adjacency matrix is

$$\begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$ii) \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

26) Find incidence matrix A and cycle matrix C of K_4-e .