

B.Sc. IV Semester Degree Examination, September/October 2022 MATHEMATICS

Paper - 4: Algebra - III, Differential Equations, Line and Multiple Integrals

Time: 3 Hours Max. Marks: 80

Instructions: 1) Part A: All questions are compulsory.

2) Part B: Solve any five questions from seven questions.

PART - A

Answer the following questions.

 $(10 \times 2 = 20)$

- Define cyclic group and show that multiplicative group of fourth roots of unity is cyclic.
- 2) Define right and left coset.
- 3) State and prove Euler's theorem.
- 4) Show that the equation $(x^2 ay) dx + (y^2 ax) dy = 0$ is exact.
- 5) Solve $p^2 7p 12 = 0$.
- 6) Solve $[\theta^3 3\theta^2 + 4]y = 0$.
- 7) Solve $[\theta^2 + 4]y = \sin 2x$.
- 8) Solve $\int_{\mathbb{C}}[(3x+y)dx+(2y-x)dy]$ along line joining (0, 1) and (3, 10).
- 9) Evaluate $\int_0^a \int_0^b (x^2 + y^2) dy dx$.

10) Solve
$$\int_0^1 \int_0^1 \frac{dxdy}{\sqrt{(1-x^2)}(1-y^2)}$$
.

PART - Builte matrix to reproduct content / 1/2

Answer any five of the following questions. Each question carries equal marks.
(12×5=60)

- II. 11) State and prove Lagrange's theorem.
 - 12) Show that every factor group of a cyclic group is cyclic.

- III. 13) State and prove quotient or factor group for the set G|H of all cosets of a normal subgroup H of the group G, is a group under the binary operations defined by Ha.Hb = Hab∀Ha, Hb∈G|H.
 - 14) If f:G→G' be a homomorphism from the group (G, ·) into the group (G',∗) then show that
 - i) f(e) = e' where e and e' are identity elements of the group G and G' respectively.
 - ii) $f(a^{-1}) = [f(a)]^{-1} \forall a \in G$.
- IV. 15) Solve the Bernoulli equation $\frac{dy}{dx} + 2y \tan x = y^2$.
 - 16) Verify the exact equation and solve (12x + 5y 9)dx + (5x + 2y 4)dy = 0.
- V. 17) Solve $y = 2px + y^2p^3$.
 - 18) Find general and singular solution of $x^2(y px) = yp^2$ by using the substitution $x^2 = u$ and $y^2 = v$.
- VI. 19) Solve $[\theta^2 + 2\theta + 1]y = 2x + 3x^2$.
 - 20) Solve $(x^2\theta^2 + x\theta + 9)y = 3x^2 + \sin(3 \log x)$.
- VII. 21) Evaluate $\int_C [(x^2 y)dx + (y^2 + x) dy]$ where C is the curve given by x = t, $y = t^2 + 1$, $0 \le t \le 1$.
 - 22) Evaluate $\int_0^a \int_0^{\sqrt{a^2-y^2}} \sqrt{(a^2-x^2-y^2)} \, dx \, dy$. Professionary (a) which is the second of the se
- VIII.23) Evaluate $\iint_A \sqrt{4x^2 y^2} \, dx \, dy$ where A is the area bounded by the lines y = 0, y = x and x = 1.
 - 24) Change the order of integration and evaluate $\int_0^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy \ dx$.

B.Sc. IV Semester Degree Examination, September/October 2022 MATHEMATICS

Paper – 4.1 : Algebra – III (Old)

Time: 3 Hours

Instructions: 1) Answer all the Sections.

Max. Marks: 60

2) Write the question number correctly.

SECTION - A

Answer any ten of the following.

(10×2=20)

- Define left and right coset.
- 2. Define quotient or factor group.
- 3. State and prove Euler's theorem.
- 4. Find the order of the elements of the multiplicative group G={1,-1,i,-i} of fourth roots of unity.
- 5. Show that every quotient group of an abelian group is abelian.
- 6. Define homomorphism and Kernel of homomorphism.
- 7. In a ring R, prove that a.0=0.a=0 $\forall a \in R$, where '0' being the additive identity.
- 8. Define vector space over a field F.
- Prove that intersection of any two subspaces of a vector space V over a field F is also a subspace.
- 10. Show that the subset $W = \{(x_1, x_2, x_3 / x_1^2 + x_2^2 + x_3^2 \le 0) \text{ of } V_3(R) \text{ is a subspace of } V_3(R).$
- 11. Is the set $\{(1,1,-1) (2,-3,5) (-2,1,4)\}$ is linearly independent.
- 12. Define range and Kernel of a linear transformation.

SECTION - B

Answer any three of the following.

 $(3 \times 5 = 15)$

- State and prove Lagrange's theorem.
- 14. State and prove fundamental theorem of homomorphism for groups.
- 15. Let G be a group a and H be a normal subgroup of G, then prove that G/H is a homomorphism image of G with H as its Kernel.
- 16. State and prove Cayley's theorem.

- 17. If f: G→G' be a homomorphism from the group (G,·) into the group (G',*) show that
 - i) f(e)=e' where e and e' are identity elements of the group G and G' respectively.
 - ii) $f(a^{-1})=[f(a)]^{-1} \forall a \in G$.

SECTION - C

Answer any two of the following.

 $(2 \times 5 = 10)$

- 18. Prove that every integral domain is a field.
- 19. Define ring and show that the subset s of a ring (R,+,⋅) is a subring of R if and only if
 - i) $\forall a,b \in s,a+b \in s$
 - ii) $\forall a,b \in s, a.b \in s.$
- 20. Prove that a ring is without divisors if and only if the cancellation law holds.
- 21. Define subring and prove that intersection of any two subrings of a ring is again a subring.

SECTION - D

Answer any three of the following.

 $(3 \times 5 = 15)$

- 22. Prove that a non empty subset W of a vector space V over a field F, is a subspace of V, if and only if
 - i) $\alpha,\beta\in W\Rightarrow \alpha+\beta\in W$
 - ii) $C \in F, \alpha \in W \Rightarrow C.\alpha \in W$.
- 23. Let V be a vector space over a field F then show that every nonempty subset of a linearly independent set of a vectors of V is linearly independent.
- 24. Define basis and dimension of a vector space V over a field F. Show that the set B = $\{(1,1,0),(1,0,1),(0,1,1)\}$ is a basis of the vector space $V_3(R)$.
- 25. Find the linear transformation $f: V_2(R) \rightarrow V_2(R)$ such that f(1,1) = (0,1) and f(-1,1) = (3,2).
- 26. Find the range, null space, rank and nullity of the linear transformation $T: V_3(R) \rightarrow V_2(R)$. defined by T(x,y,z) = (y-x,y-z) and also verify rank nullity theorem.

B.Sc. IV Semester Degree Examination, Sept./Oct. 2022 MATHEMATICS

Paper - 4.2 : Differential Equations (Old)

Time: 3 Hours Max. Marks: 60

Instructions: 1) Answer all the questions Section wise.

2) Mention the question numbers correctly.

SECTION - A

Answer any ten of the following:

 $(10 \times 2 = 20)$

- 1. Define order and degree of a differential equation and give an example.
- 2. Solve $(1 + x^2) dy + (1 + y^2) dx = 0$.
- 3. Solve the linear differential equation $\frac{dy}{dx}$ + ycotx = 4x cosecx.
- 4. Show that the equation (4x + 3y + 1) dx + (3x + 2y + 1) dy = 0 is exact.
- 5. Solve $p^2 5p 6 = 0$.
- 6. Solve $[D^3 13D + 12]y = 0$.
- 7. Solve $(D^2 + 2D + 1)y = 2e^{2x}$.
- 8. Solve $\frac{1}{D^2 + a^2} \cos ax$.
- 9. Reduce the equation $[4x^2D^2 + 4xD 1]y = 4x^2$ to linear differential equation with constant coefficients and hence find C.F.
- 10. Find a part of C.F. of the equation $\frac{d^2y}{dx^2} + \frac{3dy}{dx} + 2y = e^{2x} \sin x$.
- 11. Show that the equation $(2x^2 + 3x)y'' + (6x + 3)y' + 2y = (x + 1)e^x$ is exact.
- 12. Find the Wronskian W for the equation $\frac{d^2y}{dx^2} + y = \csc x$.

SECTION - B

Answer any three of the following:

mmex3 os god reteemed VI od II (3×5=15)

- 13. Solve $\frac{dy}{dx} = (3x + 2y + 4)^2$.
- 14. Solve the Bernoulli equation $x \frac{dy}{dx} + y = y^2 \log x$.
- 15. Solve y(2xy + 1) dx xdy = 0 by finding integrating factor.
- 16. Solve $y = x + 2tan^{-1}p$.
- 17. Find general and singular solution $x^2(y px) = yp^2$ by using the substitution $x^2 = u$ and $v^2 = v$. SECTION – C

Answer any three of the following:

- 18. Solve (D³ + 1) $y = 3 + e^{-x} + 5e^{2x}$.
- 19. Solve $(D^2 2D + 5)y = \sin 3x$.
- 20. Solve $(D^2 1)y = 2 + 5x$.
- 21. Solve $(D^2 + 4)y = \sin^2 x$.
- 22. Solve the simultaneous equation $D^2x 3x y = e^t$ and Dy 2x = 0.

SECTION - D

Answer any two of the following:

(2×5=10)

- 23. Solve $x^2y'' + xy' y = 2x^2$ (x > 0) given that $y = \frac{1}{x}$ is a part of C.F.
- 24. Solve $(1+x^2)^2 \frac{d^2y}{dx^2} + 2x(1+x^2) \frac{dy}{dx} + y = 0$ using the transformation $z = \tan^{-1}x$ by change of independent variable.
- 25. Solve $\frac{d^2y}{dy^2} y = \frac{2}{1+e^x}$ by the method of variation of parameters.
- 26. Solve by changing the dependent variable $\frac{d^2y}{dx^2} 2\tan x \frac{dy}{dx} (a^2 + 1)y = e^x \sec x$.

MININ

B.Sc. IV Semester Degree Examination, April/May - 2019 MATHEMATICS

Algebra-IV

Paper - 4.1

me: 3 Hours

isstructions to Candidates:

Maximum Marks: 60

 $(10 \times 2 = 20)$

- Answer all the sections.
- Write the question number correctly.

SECTION-A

Answer any TEN of the following questions.

nons.

- Define left and right coset.
- 2. Prove that Every cyclic group is abelian.
- 3. Define normal sub group of a group.
- 4. Define homomorphism and kernal of homomorphism.

5. If
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$$
 and $g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$ find fog and gof.

- Define a ring and give an example.
- Define integral domain and division ring.
- 8. Show that on ring (R, +, *)

i)
$$\forall a, b \in R, a(-b) = (-a)b = -(ab)$$

ii)
$$\forall a, b \in R, (-a)(-b) = ab$$

- 9. Define vector space over field F
- 10. Define linear transformation.
- II. Define range and kernel of linear transformation.
- 12. State Rank Nullity theorem.

SECTION-B

(3×5=15)

Answer any THREE of the following questions.

- 13. If 'a' is a generator of a cyclic group G then show that O(a) = O(G)11.
 - 14. State and prove Lagrange theorem.
 - Show that every subgroup of cyclic group is cyclic.
 - Show that a subgroup of G is normal iff $gHg^{-1} = H, \forall g \in G$
 - 17. State and prove Quotient factor or group for the set G_H of all cosets under the binary operation defined by $Ha.Hb = Hab \ \forall Ha, Hb \in G/H$

SECTION-C

III. Answer any TWO of the following questions.

 $(2 \times 5 = 10)$

- 18. Define subring and prove that intersection of any two subrings of a ring is again a subring.
- 19. Prove that every finite integral domain is a field.
- 20. A non empty subset 'S' of a ring R is a subring of 'R' iff (i) S + (-S) = S, $SS \subseteq S$
- 21. Show that the set $S = \left\{ \begin{pmatrix} a & o \\ b & c \end{pmatrix} : a, b, c \in Z \right\}$ is a subring of the ring M_2 (z) for all 2×2 matrices over the set of integers.

SECTION-D

IV. Answer any THREE of the following questions.

 $(3 \times 5 = 15)$

- 22. The Union of two subspace of a vector space V over a field F is a subspace iff one is contained in the other.
- 23. Let S be a non empty subset of a vector space $V\{F\}$ then
 - L [S] is a subspace of V
 - $S \subseteq L(S) \& L[S]$ is the smallest subspace of V containing 'S'.
- 24. Show that the set $B = \{(1,1,0), (1,0,1), (0,1,1)\}$ is a basis of the vector space $V_3(R)$.
- 25. Find the matrix of the linear transformation $T: V_2(R) \to V_3(R)$ define by T(x,y) = (2y-x, y, 3y-3x)
- 26. Find the range, nulspace, rank and nullity of the linear transformation $T:V_3(R) \to V_2(R)$ defined by T(x,y,z) = (y-x,y-z) and also verify Rank nullity theorem.

B.Sc. IV Semester Degree Examination, April/May - 2019

MATHEMATICS

Differential Equations - I

Paper - 4.2

Time: 3 Hours

Maximum Marks: 60

Instructions to Candidates:

- Answer the questions section wise. 1.
- 2. Mention the question numbers correctly.

SECTION-A

Answer any TEN of the following.

 $(10 \times 2 = 20)$

- Define order and degree of a differential equation and give an example. 1.
- Solve $\log(4)/dx = ax + by$ 2.
- Solve the linear differential equation $x \frac{dy}{dx} \log x + y = 2 \log x$ 3.
- Solve $p^2 7p + 12 = 0$ 4.
- Find the general solution of $(D^3 2D^2 + 4D 8)y = 0$ 5.
- Solve $(D^2 + D 6)y = x$ 6.
- Solve $(D-1)y = \cos 2x$ 7.
- Reduce the equation to linear differential equation with constant co-efficient and hence 8. find the C F of $x^2y_2 + xy_1 - 4y = x^2$
- Solve $\frac{dx}{dt} + \omega y = 0$ and $\frac{dy}{dt} \omega x = 0$ 9.
- Find a part of C.F of the equation $(3-x)y_2 (9-4x)y_1 + (6-3x)y = 0$ 10.

- Find the Wranskian W for the equation $x^2y_1 + xy_1 y = x^2e^x$
- 12. Show that the equation $(1+x^2)y_1 + 4xy_1 + 2y = \sec^2 x$ is exact.

SECTION-B

Answer any THREE of the following.

(3×5≈15)

- Explain the method of solving the linear differential equation $\frac{dy}{dx} + Py = Q$
- Show that $(2+2x^2\sqrt{y})ydx + (x^2\sqrt{y}+2)xdy = 0$ is exact and hence solve it.
- 15. Solve $y + px = p^2x^4$
- 16. Solve $y = 3px + 6p^2y^2$
- 17. Solve $e^{3v}(p-1) + p^3e^{2y} = 0$ using the transformations $e^x = u$ and $e^y = v$.

SECTION-C

Answer any THREE of the following.

(3×5=15)

- Obtain the general solution of $(D^4 + 2D^3 3D^2)y = 3e^{2x} + 4\sin x$.
- Find the general solution of $(D^3 7D 6)y = e^{2x}(1+x)$
- Solve $(D^2+9)y = \cos 2x \cdot \cos x$.
- 21. Solve $x^2y_2 2y = x^2 + y_2$
- Obtain the general solution of $\frac{dx}{dt} + 2y = -\sin t$ and $\frac{dy}{dt} 2x = \cos t$

SECTION-D

Answer any TWO of the following.

(2×5=10M)

- 23. Solve $\left(D^2 + \frac{3}{x}D + \frac{a^2}{x^4}\right)y = 0$ by the method of changing the independent variable.
- 24. By changing the dependent variable solve $y_2 \frac{2}{x}y_1 + \left(1 + \frac{2}{x^2}\right)y = xe^x$
- 25. Solve $(1-x)y_2 + xy_1 y = (1-x)^2$, x > 1 by the method of variation of parameters.
- 26. Show that $x^2(1+x)y_2 + 2x(2+3x)y_1 + 2(1+3x)y = 0$ is exact and hence solve it.