Logic Design

A Review

Boolean Algebra

* Two Values: zero and one
\& Three Basic Functions: And, Or, Not
* Any Boolean Function Can be Constructed from These Three

And	0	1
0	$\mathbf{0}$	$\mathbf{0}$
1	$\mathbf{0}$	$\mathbf{1}$

Or	0	1
0	$\mathbf{0}$	$\mathbf{1}$
1	$\mathbf{1}$	$\mathbf{1}$

Not	
0	$\mathbf{1}$
1	$\mathbf{0}$

Algebraic Lazus

Classification	Law
Identity	$a 1=1 a=a$ $a+0=0+a=a$
Dominance	$a 0=0 a=0$
	$1+a=a+1=1$
Commutativity	$a+b=b+a$
$a b=b a$	

Boolean Expressions

* Addition represents OR
* Multiplication represents AND
* Not is represented by a prime a' or an overbara
* Examples:
$\otimes \mathrm{s}=\mathrm{a}^{\prime} \mathrm{bc}+\mathrm{ab} \mathrm{b}^{\prime} \mathrm{c}+\mathrm{abc}+\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}^{\prime}$
\& $q=a b+b c+a c+a b c$

Superfluous Terms

* The following Two Equations Represent The Same Function.

$$
\begin{aligned}
& q=a b+b c+a c+a b c \\
& q=a b+b c+a c
\end{aligned}
$$

\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{q}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Prime Implicants

* A Prime Implicant is a Product of Variables or Their Complements, eg. ab'cd'
* If a Prime Implicant has the Value 1, then the Function has the Value 1
\& A Minimal Equation is a Sum of Prime Implicants

Minimization and Minterms

* Minimization Reduces the Size and Number of Prime Implicants
* A MinTerm is a Prime Implicant with the Maximum Number of Variables
\& For a 3-input Function a'bc is a MinTerm, while ab is not.
* Prime Implicants can be Combined to Eliminate Variables, $a b c^{\prime}+a b c=a b$

Mivimization with Maps

* A Karnaugh Map

Procedure

* Select Regions Containing All 1's
* Regions should be as Large as Possible
\& Regions must contain 2^{k} cells
* Regions should overlap as little as possible
* The complete set of regions must contain all 1 's in the map

Procedure 2

\& Top and Bottom of Map are Contiguous

* Left and Right of Map are Contiguous
* Regions represent Prime Implicants
* Use Variable name guides to construct equation
- Completely inside the region of a variable means prime implicant contains variable
- Completely outside the region of a variable means prime implicant contains negation

Applied to Previous Map

$$
q=c^{\prime} b^{\prime}+c^{\prime} a^{\prime}
$$

A Variable Karnaugh Map $00 \quad 01 \quad 11 \quad 10$
 B $\left\{\begin{array}{llllll}00 & 0 & 0 & 0 & 0 \\ 01 & 0 & 1 & 1 & 1 \\ 11 & 0 & 1 & 0 & 1 \\ 10 & 0 & 1 & 1 & 1\end{array}\right.$

First Minimization

D

Second Minimization

Minimal Forms for Previous Slides:
$\otimes a b^{\prime} d+b c^{\prime} d+a^{\prime} b c+a c d^{\prime}$
$\otimes a c^{\prime} d+a^{\prime} b d+b c d^{\prime}+a b^{\prime} c$

* Moral: A Boolean Function May Have Several Different Minimal Forms
* Karnaugh Maps are Ineffective for Functions with More than Six Inputs.

Quine McClusky Minimization

\& Amenable to Machine Implementation

* Applicable to Circuits with an Arbitrary Number of Inputs
* Effective Procedure for Finding Prime Implicants, but ...
\& Can Require an Exponential Amount of Time for Some Circuits

Ouine-McClusky Procedure

* Start with The Function Truth Table
\& Extract All Input Combinations that Produce a TRUE Output (MinTerms)
* Group All MinTerms by The Number of Ones They Contain
* Combine Minterms from Adjacent Groups

More Quine-McClusky

\& Two Min-Terms Combine If They Differ by Only One Bit

* The Combined MinTerm has an x in the Differing Position
* Create New Groups From Combined Min-Terms
\& Each Member of A New Group Must Have the Same Number of 1's and x 's

Yet More Quine-McClusky

* Each Member of A Group Must Have x's in The Same Position.
* Combine Members of the New Groups To Create More New Groups
* Combined Terms Must Differ By One Bit, and Have x's in the Same Positions
* Combine as Much as Possible
* Select Prime Implicants to "Cover" All Ones in the Function

Quine-McClusky Example 1

Numbers in Parentheses are Truth-Table Positions.
$0011(3)$ 1100(12)
0111(7) 1011(11) 1101(13)
1110(14)
1111(15)

Qume-McClusky Example 2

New Groups After Combining MinTerms

$$
\begin{array}{|l|l}
\hline 0 x 11(3,7) & 110 \mathrm{x}(12,13) \\
\hline 1 \times 11(11,15) & 111 \mathrm{x}(14,15) \\
\hline \mathrm{x} 011(3,11) & 11 \mathrm{x} 0(12,14) \\
\hline \mathrm{x} 111(7,15) & 11 \mathrm{x}(13,15) \\
\hline
\end{array}
$$

Qume-McClusky Example 3

The Final Two Groups
Note That These Two Elements Cover All Truth-Table Positions

$$
\frac{\mathrm{xx} 11(3,7,11,15)}{11 \mathrm{xx}(12,13,14,15)}
$$

Qume-McClusky Example 4

* Each Group Element Represents a Prime Implicant
* It is Necessary to Select Group Elements to Cover All Truth-Table Positions.
\& In This Case, ab+cd is the Minimal Formula.
* In General, Selecting a Minimal Number of Prime Implicants is NP-Complete

Basic Logic Symbols

The Exclusive Or Function

A Simple Logic Diagram

Signal Flow

Additional Logic Symbols

Sequential Logic

* Contains Memory Elements
\& Memory is Provided by Feedback
* Circuit diagrams generally have implicit or explicit cycles
* Two Styles: Synchronous and Asynchronous

An RS Flip-Flop

RS Characteristics

\star If $\mathrm{S}=0$ and $\mathrm{R}=1, \mathrm{Q}$ is set to 1 , and Q^{\prime} is reset to 0
\& If $\mathrm{R}=0$ and $\mathrm{S}=1, \mathrm{Q}$ is reset to 0 , and Q^{\prime} is set to 1
\& If $\mathrm{S}=1$ and $\mathrm{R}=1, \mathrm{Q}$ and Q^{\prime} maintain their previous state.

* If $\mathrm{S}=0$ and $\mathrm{R}=0$, a transision to $\mathrm{S}=1, \mathrm{R}=1$ will cause oscillation.

Instability

\otimes RS flip-flops can become unstable if both R and S are set to zero.

* All Sequential elements are fundamentally unstable under certain conditions
- Invalid Transisions
- Transisions too close together
- Transisions at the wrong time

D Flip-Flops

D-Flip Flop Characteristics

\& Avoids the instability of the RS flip-flop
\& Retains its last input value

* Formally known as a "Delay" flip-flop
* May become unstable if transisions are too close together
\& Is generally implemented as a special circuit, not as pictured here.

A Clocked D Flip-Flop

Clocked D-Flip Flop

Characteristics

\& Synchronizes transisions with a clock

* Input should remain stable while clock is active
* Transision at the wrong time can cause instability
- Changes while clock is active
- Changes simultaneous with clock

Flip-Flop Symbols

Flip-Flop Symbols Contain Implicit Feedback Loops

A CMOS Flip-Flop

Clk

CMOS Logic Elements

* CMOS $=$ Complementary MOS
* CMOS Elements Often Require 2 Clocks or 2 Controls
* Clocks or Controls must be Complements of One another
* Clock-Skew (Non-Simultaneous changes in both clocks) can cause problems

An Asynchronous Sequential Circuit

Combinational Logic

Asymchronous Circuits

* Combinational Logic is used:
- To Compute New States
- To Compute Outputs
* State is maintained in Asynchronous Circuit Elements
* Care must be used to avoid oscillations

A Synchronous Sequential Circuit

Symchronous Circuits

* Combinational Logic is used to:
- Compute New States
- Compute Outputs
* State is maintained in Synchronous Flip-Flops
* State Changes can be made only when clock changes
* Combinational Logic Must be Stable when Clock is Active

Register Symbol

Load

Clock

Output

Register Issues

* Generally A Collection of D Flip-Flops
* Can be Synchronous or Asynchronous
- Default is Assumption is Synchronous
* May have internal wiring to:
- Perform Shifts
- Set/Clear
- All-Zero Status Flag

Tristate Elements

* Three States:
- Zero (Output is grounded)
- One (Output connected to Power Terminal)
- High-Impedance (Output Not Connected to Either Power Or Ground)
* Can be Used to Construct Cheap Multiplexors

CMOS Tri-state Buffers

Inverting

Tri-State Buffer Issues

* The Gate Amplifies its Signal
\& May be Inverting or Non-Inverting
\& Often used to Construct Multiplexors Using Wired-Or Connections

More Tri-State Issues

* In a Wired-Or Connection, Only One Buffer can be in Non-Tristate State
* Violating This Rule Can Destroy The Circuit Due a Power/Ground Short

The CMOS Transmission Gate

Transmission Gate Issues

* Similar to Tristate Buffer
* Has No Amplification
* Number of Consecutive Transmission Gates is Limited
* Similar Problems With Wired-Or Connections

Logic Design

A Review

Boolean Algebra

* Two Values: zero and one
* Three Basic Functions: And, Or, Not
* Any Boolean Function Can be Constructed from These Three

And	0	1
0	$\mathbf{0}$	$\mathbf{0}$
1	$\mathbf{0}$	$\mathbf{1}$

Algebraic Laws

Classification	Law
Identity	$a 1=1 a=a$ $a+0=0+a=a$
Dominance	$a 0=0 a=0$
	$1+a=a+1=1$
Commutativity	$a+b=b+a$
	$a b=b a$
Associativity	$a(b c)=(a b) c$
	$a+(b+c)=(a+b)+c$
Distributive	$a(b+c)=a b+a c$
	$a+b c=(a+b)(a+c)$
Demorgan's Laws	$(a+b)^{\prime}=a^{\prime} b^{\prime}$
	$(a b)^{\prime}=a^{\prime}+b^{\prime}$

Boolean Expressions

* Addition represents OR
* Multiplication represents AND
* Not is represented by a prime a^{\prime} or an overbar \bar{a}
* Examples:
$* s=a^{\prime} b c+a b^{\prime} c+a b c^{\prime}+a^{\prime} b^{\prime} c^{\prime}$
$* q=a b+b c+a c+a b c$

Superfluous Terms

* The following Two Equations Represent The Same Function.

$$
\begin{aligned}
& q=a b+b c+a c+a b c \\
& q=a b+b c+a c
\end{aligned}
$$

\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{q}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Prime Implicants

* A Prime Implicant is a Product of Variables or Their Complements, eg. ab'cd'
* If a Prime Implicant has the Value 1, then the Function has the Value 1
* A Minimal Equation is a Sum of Prime Implicants

Minimization and Minterms

* Minimization Reduces the Size and Number of Prime Implicants
* A MinTerm is a Prime Implicant with the Maximum Number of Variables
* For a 3-input Function a'bc is a MinTerm, while ab is not.
* Prime Implicants can be Combined to Eliminate Variables, $a b c^{\prime}+a b c=a b$

Minimization with Maps

* A Karnaugh Map

Procedure

* Select Regions Containing All 1's
* Regions should be as Large as Possible
* Regions must contain 2^{k} cells
* Regions should overlap as little as possible
* The complete set of regions must contain all 1's in the map

Procedure 2

* Top and Bottom of Map are Contiguous
* Left and Right of Map are Contiguous
* Regions represent Prime Implicants
* Use Variable name guides to construct equation
- Completely inside the region of a variable means prime implicant contains variable
- Completely outside the region of a variable means prime implicant contains negation

Applied to Previous Map

$$
q=c^{\prime} b^{\prime}+c^{\prime} a^{\prime}
$$

First Minimization

Second Minimization

Minimal Forms for Previous Slides:
$* a b^{\prime} d+b c^{\prime} d+a^{\prime} b c+a c d^{\prime}$

* $a c^{\prime} d+a^{\prime} b d+b c d^{\prime}+a b^{\prime} c$
* Moral: A Boolean Function May Have Several Different Minimal Forms
* Karnaugh Maps are Ineffective for Functions with More than Six Inputs.

Quine McClusky Minimization

* Amenable to Machine Implementation
* Applicable to Circuits with an Arbitrary Number of Inputs
* Effective Procedure for Finding Prime Implicants, but ...
* Can Require an Exponential Amount of Time for Some Circuits

Quine-McClusky Procedure

* Start with The Function Truth Table
* Extract All Input Combinations that Produce a TRUE Output (MinTerms)
* Group All MinTerms by The Number of Ones They Contain
* Combine Minterms from Adjacent Groups

More Quine-McClusky

* Two Min-Terms Combine If They Differ by Only One Bit
* The Combined MinTerm has an x in the Differing Position
* Create New Groups From Combined Min-Terms
* Each Member of A New Group Must Have the Same Number of 1's and x's

Yet More Quine-McClusky

* Each Member of A Group Must Have x's in The Same Position.
* Combine Members of the New Groups To Create More New Groups
* Combined Terms Must Differ By One Bit, and Have x's in the Same Positions
$*$ Combine as Much as Possible
* Select Prime Implicants to "Cover" All Ones in the Function

Quine-McClusky Example 1

Numbers in Parentheses are Truth-Table Positions.
$0011(3)$ 1100(12)
0111(7) 1011(11) 1101(13)
1110(14)
1111(15)

Quine-McClusky Example 2

New Groups After Combining MinTerms

$$
\begin{array}{|l|l|}
\hline 0 x 11(3,7) & 110 x(12,13) \\
\hline 1 \times 11(11,15) & 111 \times(14,15) \\
\hline x 011(3,11) & 11 \times 0(12,14) \\
\hline x 111(7,15) & 11 \times 1(13,15) \\
\hline
\end{array}
$$

Quine-McClusky Example 3

The Final Two Groups
Note That These Two Elements Cover All Truth-Table Positions

$$
\frac{x x 11(3,7,11,15)}{11 \times x(12,13,14,15)}
$$

Quine-McClusky Example 4

* Each Group Element Represents a Prime Implicant
* It is Necessary to Select Group Elements to Cover All Truth-Table Positions.
* In This Case, ab+cd is the Minimal Formula.
* In General, Selecting a Minimal Number of Prime Implicants is NP-Complete

Basic Logic Symbols

The Exclusive Or Function

A Simple Logic Diagram

Signal Flow

Additional Logic Symbols

Sequential Logic

* Contains Memory Elements
* Memory is Provided by Feedback
* Circuit diagrams generally have implicit or explicit cycles
* Two Styles: Synchronous and Asynchronous

An RS Flip-Flop

RS Characteristics

* If $\mathrm{S}=0$ and $\mathrm{R}=1, \mathrm{Q}$ is set to 1 , and Q^{\prime} is reset to 0
$*$ If $\mathrm{R}=0$ and $\mathrm{S}=1, \mathrm{Q}$ is reset to 0 , and Q^{\prime} is set to 1
* If $\mathrm{S}=1$ and $\mathrm{R}=1, \mathrm{Q}$ and Q^{\prime} maintain their previous state.
* If $\mathrm{S}=0$ and $\mathrm{R}=0$, a transision to $\mathrm{S}=1, \mathrm{R}=1$ will cause oscillation.

Instability

* RS flip-flops can become unstable if both R and S are set to zero.
* All Sequential elements are fundamentally unstable under certain conditions
- Invalid Transisions
- Transisions too close together
- Transisions at the wrong time

D Flip-Flops

D-Flip Flop Characteristics

* Avoids the instability of the RS flip-flop
* Retains its last input value
* Formally known as a "Delay" flip-flop
* May become unstable if transisions are too close together
* Is generally implemented as a special circuit, not as pictured here.

A Clocked D Flip-Flop

Clocked D-Flip Flop Characteristics

* Synchronizes transisions with a clock
* Input should remain stable while clock is active
* Transision at the wrong time can cause instability
- Changes while clock is active
- Changes simultaneous with clock

Flip-Flop Symbols

Flip-Flop Symbols Contain Implicit Feedback Loops

A CMOS Flip-Flop

CMOS Logic Elements

* CMOS = Complementary MOS
* CMOS Elements Often Require 2 Clocks or 2 Controls
* Clocks or Controls must be Complements of One another
* Clock-Skew (Non-Simultaneous changes in both clocks) can cause problems

An Asynchronous Sequential Circuit

Asynchronous Circuits

* Combinational Logic is used:
- To Compute New States
- To Compute Outputs
* State is maintained in Asynchronous Circuit Elements
* Care must be used to avoid oscillations

A Synchronous Sequential Circuit

Synchronous Circuits

* Combinational Logic is used to:
- Compute New States
- Compute Outputs
* State is maintained in Synchronous Flip-Flops
* State Changes can be made only when clock changes
* Combinational Logic Must be Stable when Clock is Active

Register Symbol

Input

Register Issues

* Generally A Collection of D Flip-Flops Can be Synchronous or Asynchronous
* Default is Assumption is Synchronous
* May have internal wiring to:
- Perform Shifts
- Set/Clear
- All-Zero Status Flag

Tristate Elements

* Three States:
- Zero (Output is grounded)
- One (Output connected to Power Terminal)
- High-Impedance (Output Not Connected to Either Power Or Ground)
* Can be Used to Construct Cheap Multiplexors

CMOS Tri-state Buffers

Inverting

Tri-State Buffer Issues

* The Gate Amplifies its Signal
* May be Inverting or Non-Inverting
* Often used to Construct Multiplexors Using Wired-Or Connections

More Tri-State Issues

* In a Wired-Or Connection, Only One Buffer can be in Non-Tristate State
* Violating This Rule Can Destroy The Circuit Due a Power/Ground Short

DANGER!

The CMOS Transmission Gate

Transmission Gate Issues

* Similar to Tristate Buffer
* Has No Amplification
* Number of Consecutive Transmission Gates is Limited
* Similar Problems With Wired-Or Connections

