

Logic Design

A Review

Boolean Algebra

- Two Values: zero and one
- Three Basic Functions: And, Or, Not
- Any Boolean Function Can be Constructed from These Three

And	0	1
0	0	0
1	0	1

Or	0	1
0	0	1
1	1	1

Not	
0	1
1	0

Algebraic Laws

Classification	Law
Identity	a1=1a=a
	a+0=0+a=a
Dominance	a0=0a=0
	1+a=a+1=1
Commutativity	a+b=b+a
	ab=ba
Associativity	a(bc)=(ab)c
	a+(b+c)=(a+b)+c
Distributive	a(b+c)=ab+ac
	a+bc=(a+b)(a+c)
Demorgan's Laws	(a+b)'=a'b'
	(ab)' = a' + b'

Boolean Expressions

- * Addition represents OR
- Multiplication represents AND
- ♦ Not is represented by a prime a' or an overbar a
- * Examples:
- *s = a'bc + ab'c + abc' + a'b'c'
- \Rightarrow q = ab + bc + ac + abc

Superfluous Terms

* The following Two Equations Represent The Same Function.

$$q = ab + bc + ac + abc$$

 $q = ab + bc + ac$

a	b	c	\mathbf{q}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Prime Implicants

- A Prime Implicant is a Product of Variables or Their Complements, eg. ab'cd'
- If a Prime Implicant has the Value 1, then the Function has the Value 1
- A Minimal Equation is a Sum of Prime Implicants

Minimization and Minterms

- Minimization Reduces the Size and Number of Prime Implicants
- A MinTerm is a Prime Implicant with the Maximum Number of Variables
- For a 3-input Function a'bc is a MinTerm, while ab is not.
- Prime Implicants can be Combined to Eliminate Variables, abc'+abc = ab

Minimization with Maps

A Karnaugh Map

		B B			
		00	01	11	10
	0	1	0	0	1
A {	1	1	0	0	0

Procedure

- Select Regions Containing All 1's
- * Regions should be as Large as Possible
- * Regions must contain 2k cells
- Regions should overlap as little as possible
- * The complete set of regions must contain all 1's in the map

Procedure 2

- * Top and Bottom of Map are Contiguous
- Left and Right of Map are Contiguous
- Regions represent Prime Implicants
- Use Variable name guides to construct equation
 - Completely inside the region of a variable means prime implicant contains variable
 - Completely outside the region of a variable means prime implicant contains negation

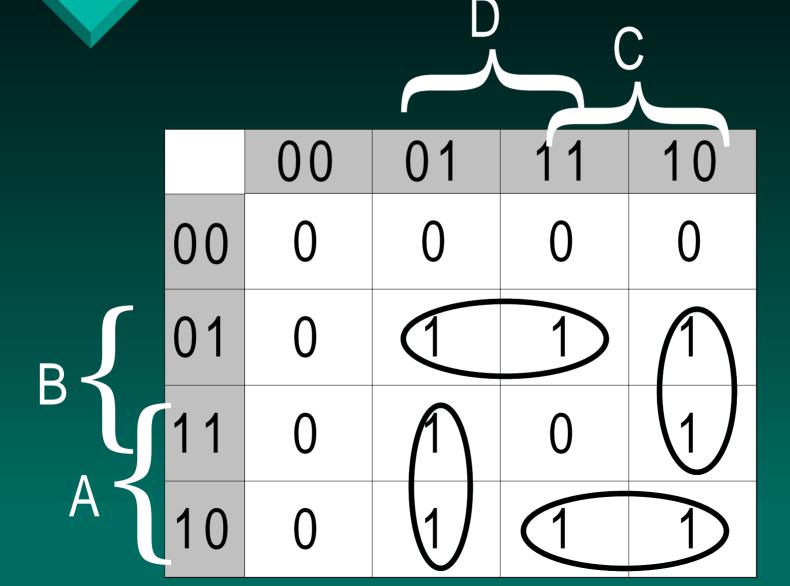
Applied to Previous Map

$$q=c'b'+c'a'$$

A 4 Variable Karnaugh Map

		00	01	11	10
	00	0	0	0	0
	01	0	1	1	1
	11	0	1	0	1
A	10	0	1	1	1

First Minimization



Second Minimization 00

Minimal Forms for Previous Slides:

$$*ab'd+bc'd+a'bc+acd'$$

$$*ac'd + a'bd + bcd' + ab'c$$

- Moral: A Boolean Function May Have Several Different Minimal Forms
- * Karnaugh Maps are Ineffective for Functions with More than Six Inputs.

Quine McClusky Minimization

- Amenable to Machine Implementation
- Applicable to Circuits with an Arbitrary Number of Inputs
- * Effective Procedure for Finding Prime Implicants, but ...
- Can Require an Exponential Amount of Time for Some Circuits

Quine-McClusky Procedure

- Start with The Function Truth Table
- Extract All Input Combinations that Produce a TRUE Output (MinTerms)
- Group All MinTerms by The Number of Ones They Contain
- Combine Minterms from Adjacent Groups

More Quine-McClusky

- Two Min-Terms Combine If They Differ by Only One Bit
- The Combined MinTerm has an x in the Differing Position
- Create New Groups From Combined Min-Terms
- * Each Member of A New Group Must Have the Same Number of 1's and x's

Yet More Quine-McClusky

- * Each Member of A Group Must Have x's in The Same Position.
- Combine Members of the New Groups
 To Create More New Groups
- Combined Terms Must Differ By One Bit, and Have x's in the Same Positions
- Combine as Much as Possible
- Select Prime Implicants to "Cover" All Ones in the Function

Numbers in Parentheses are Truth-Table Positions.

```
0011(3) 1100(12)
0111(7) 1011(11) 1101(13)
1110(14)
1111(15)
```

New Groups After Combining MinTerms

0x11(3,7)	110x(12,13)
1x11(11,15)	111x(14,15)
x011(3,11)	11x0(12,14)
x111(7,15)	11x1(13,15)

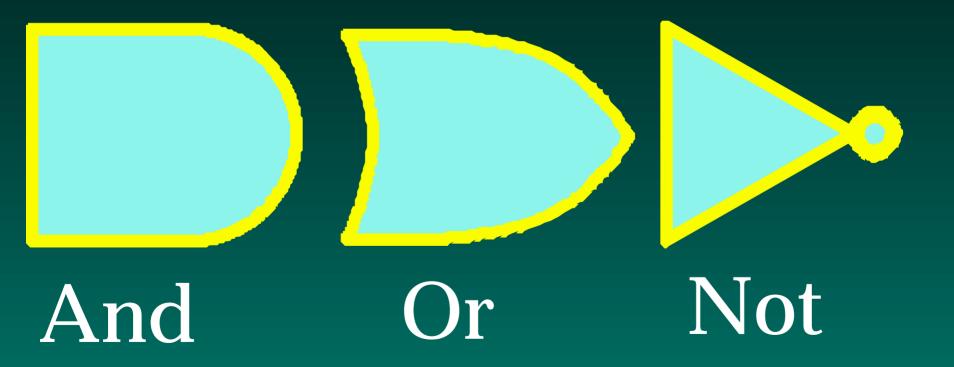
The Final Two Groups

Note That These Two Elements Cover All Truth-Table Positions

xx11(3,7,11,15) 11xx(12,13,14,15)

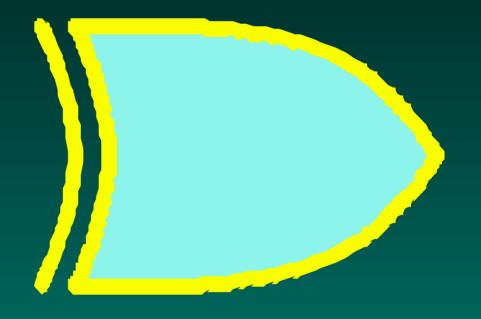
- Each Group Element Represents a Prime Implicant
- * It is Necessary to Select Group Elements to Cover All Truth-Table Positions.
- In This Case, ab+cd is the Minimal Formula.
- In General, Selecting a Minimal Number of Prime Implicants is NP-Complete

Basic Logic Symbols

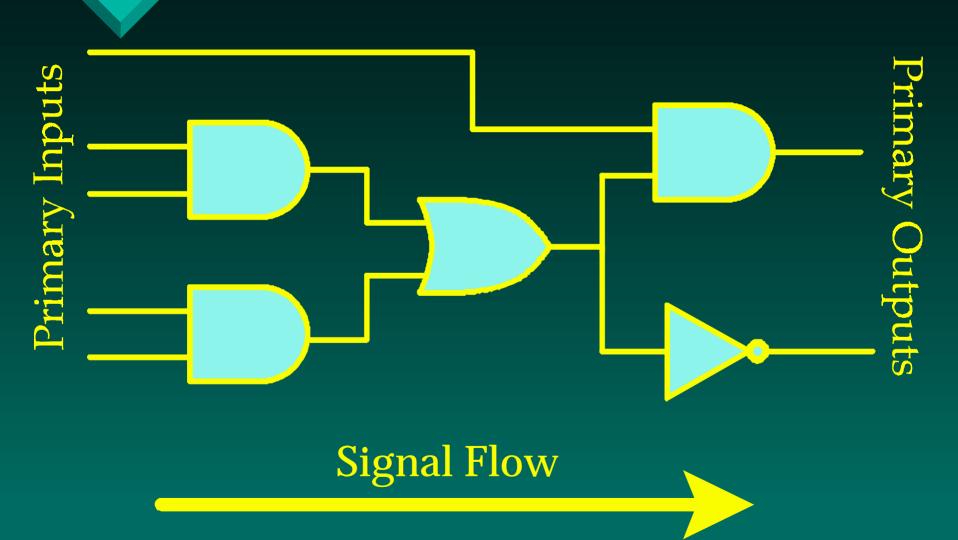


The Exclusive Or Function

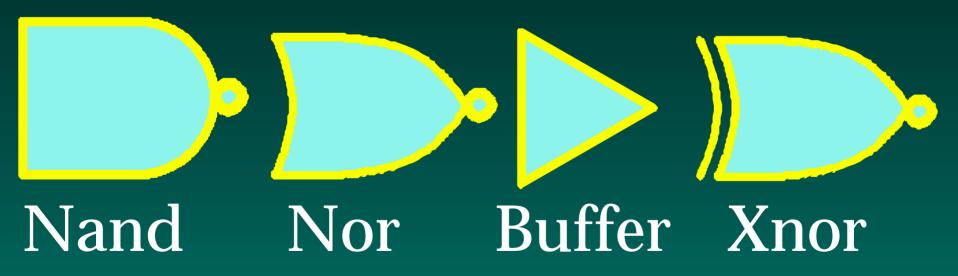
Xor	0	1
0	0	1
1	1	0



A Simple Logic Diagram



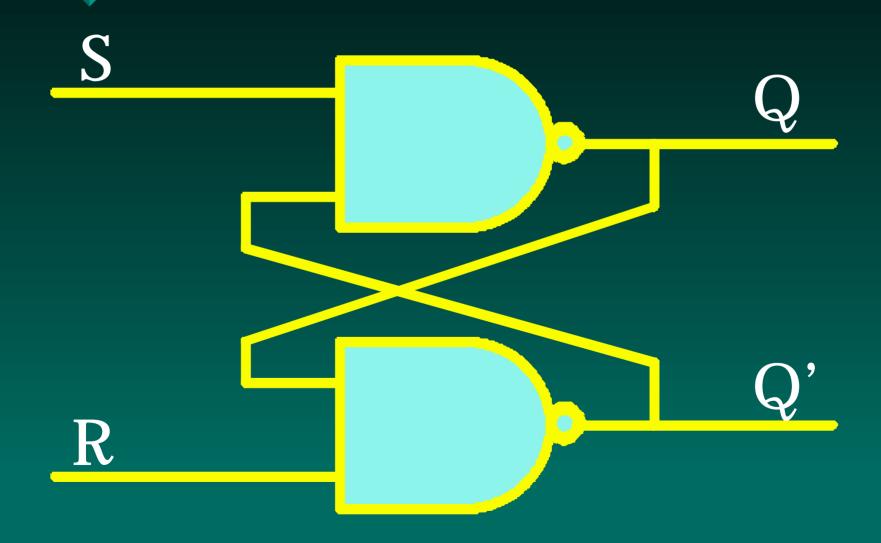
Additional Logic Symbols



Sequential Logic

- Contains Memory Elements
- * Memory is Provided by Feedback
- Circuit diagrams generally have implicit or explicit cycles
- Two Styles: Synchronous and Asynchronous

An RS Flip-Flop

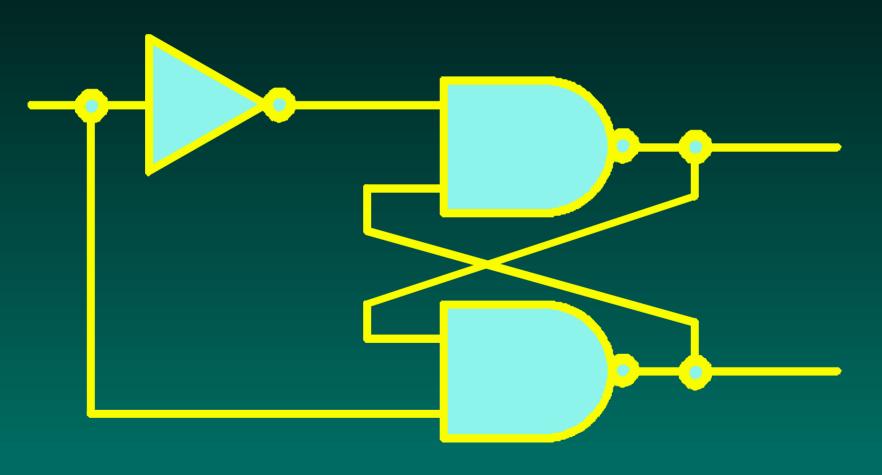


RS Characteristics

- ❖ If S=0 and R=1, Q is set to 1, and Q' is reset to 0
- ❖ If R=0 and S=1, Q is reset to 0, and Q' is set to 1
- ❖ If S=1 and R=1, Q and Q' maintain their previous state.
- ❖ If S=0 and R=0, a transision to S=1, R=1 will cause oscillation.

Instability

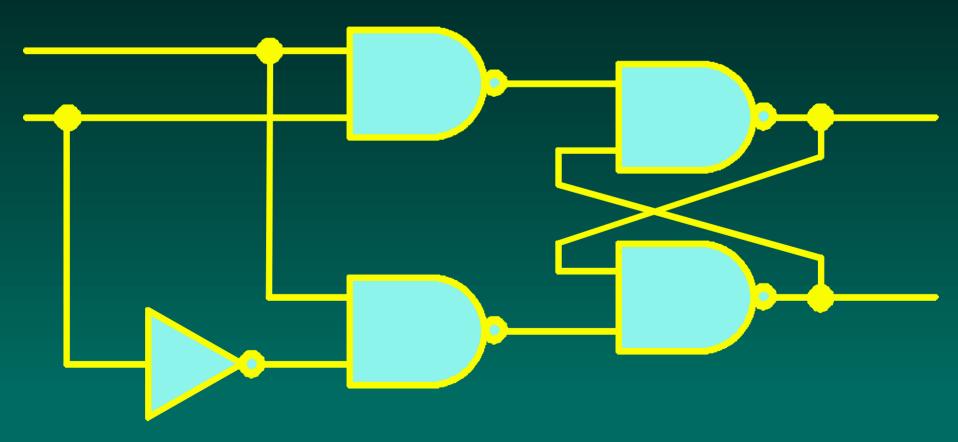
- * RS flip-flops can become unstable if both R and S are set to zero.
- All Sequential elements are fundamentally unstable under certain conditions
 - Invalid Transisions
 - Transisions too close together
 - Transisions at the wrong time



D-Flip Flop Characteristics

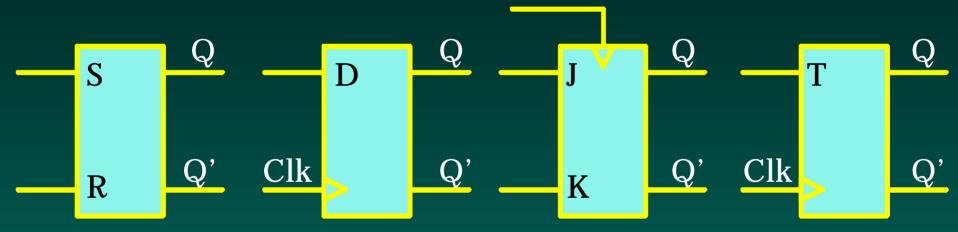
- * Avoids the instability of the RS flip-flop
- Retains its last input value
- Formally known as a "Delay" flip-flop
- May become unstable if transisions are too close together
- Is generally implemented as a special circuit, not as pictured here.

A Clocked D Flip-Flop



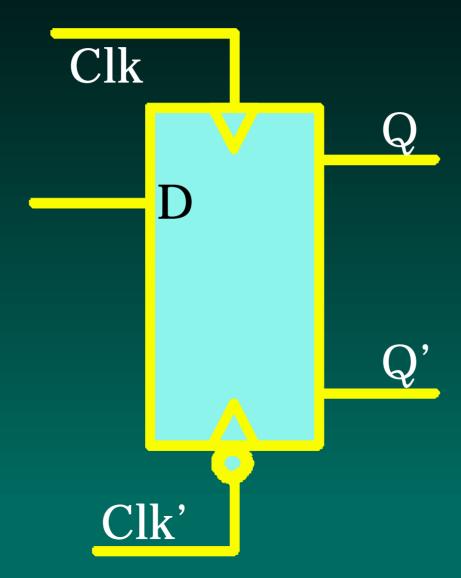
Clocked D-Flip Flop Characteristics

- Synchronizes transisions with a clock
- Input should remain stable while clock is active
- Transision at the wrong time can cause instability
 - Changes while clock is active
 - Changes simultaneous with clock



Flip-Flop Symbols Contain Implicit Feedback Loops

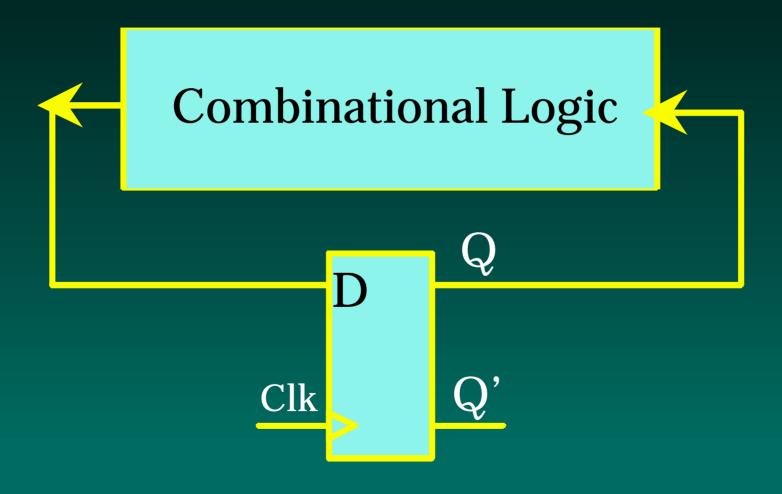
A CMOS Flip-Flop



CMOS Logic Elements

- CMOS = Complementary MOS
- CMOS Elements Often Require 2 Clocks or 2 Controls
- Clocks or Controls must be Complements of One another
- Clock-Skew (Non-Simultaneous changes in both clocks) can cause problems

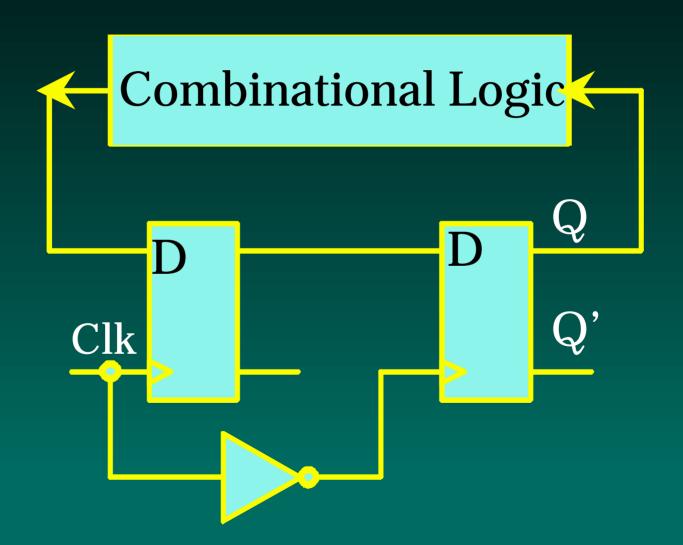
An Asynchronous Sequential Circuit



Asynchronous Circuits

- Combinational Logic is used:
 - To Compute New States
 - To Compute Outputs
- State is maintained in Asynchronous Circuit Elements
- Care must be used to avoid oscillations

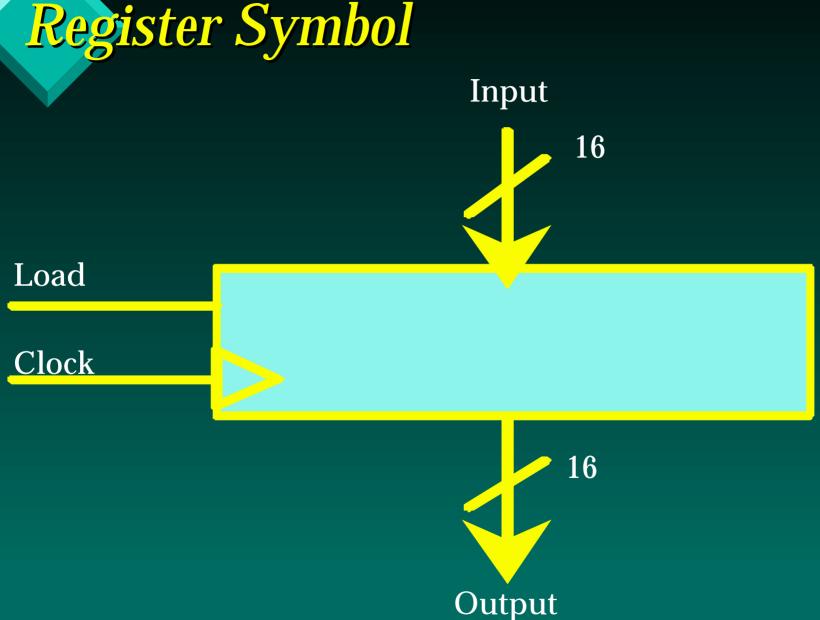
A Synchronous Sequential Circuit



Synchronous Circuits

- Combinational Logic is used to:
 - Compute New States
 - Compute Outputs
- State is maintained in Synchronous Flip-Flops
- State Changes can be made only when clock changes
- Combinational Logic Must be Stable when Clock is Active

Register Symbol



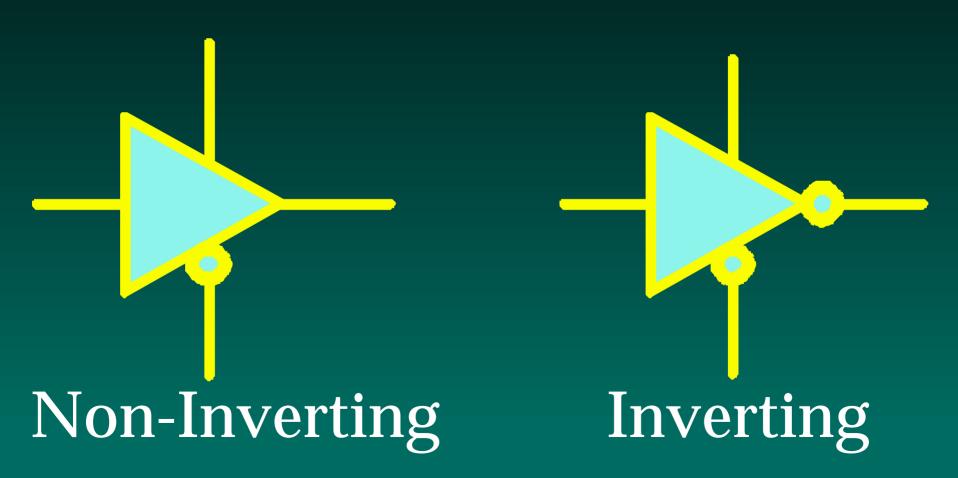
Register Issues

- * Generally A Collection of D Flip-Flops
- * Can be Synchronous or Asynchronous
- Default is Assumption is Synchronous
- May have internal wiring to:
 - Perform Shifts
 - Set/Clear
 - All-Zero Status Flag

Tristate Elements

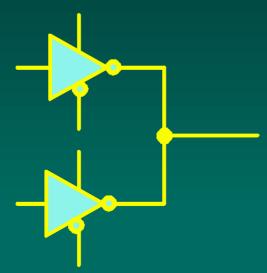
- Three States:
 - Zero (Output is grounded)
 - One (Output connected to Power Terminal)
 - High-Impedance (Output Not Connected to Either Power Or Ground)
- Can be Used to Construct Cheap Multiplexors

CMOS Tri-state Buffers



Tri-State Buffer Issues

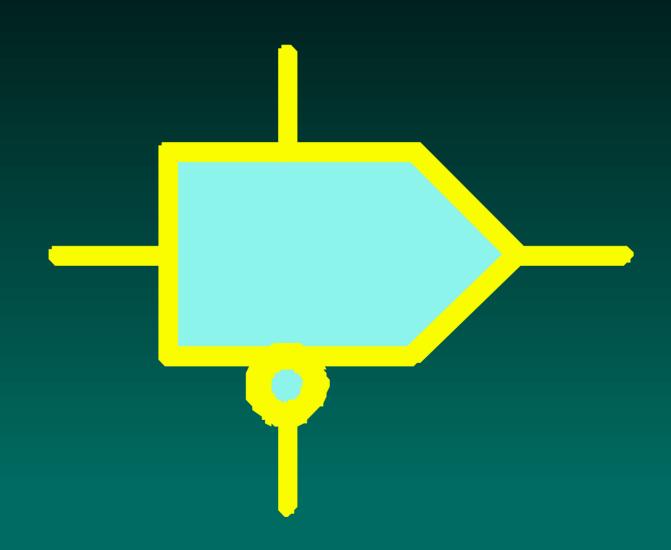
- The Gate Amplifies its Signal
- * May be Inverting or Non-Inverting
- Often used to Construct Multiplexors Using Wired-Or Connections



More Tri-State Issues

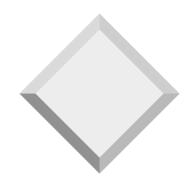
- In a Wired-Or Connection, Only One Buffer can be in Non-Tristate State
- Violating This Rule Can Destroy The Circuit Due a Power/Ground Short

The CMOS Transmission Gate



Transmission Gate Issues

- Similar to Tristate Buffer
- Has No Amplification
- Number of Consecutive Transmission
 Gates is Limited
- Similar Problems With Wired-Or Connections



Logic Design

A Review

Boolean Algebra

- Two Values: zero and one
- * Three Basic Functions: And, Or, Not
- Any Boolean Function Can be Constructed from These Three

And	0	1
0	0	0
1	0	1

Or	0	1
0	0	1
1	1	1

Not	
0	1
1	0

Algebraic Laws

Classification	Law
Identity	a1=1a=a
	a+0=0+a=a
Dominance	a0=0a=0
	1+a=a+1=1
Commutativity	a+b=b+a
	ab=ba
Associativity	a(bc)=(ab)c
	a+(b+c)=(a+b)+c
Distributive	a(b+c)=ab+ac
	a+bc=(a+b)(a+c)
Demorgan's Laws	(a+b)'=a'b'
	(ab)' = a' + b'

Boolean Expressions

- Addition represents OR
- Multiplication represents AND
- * Not is represented by a prime a' or an overbar \overline{a}
- Examples:
- s = a'bc + ab'c + abc' + a'b'c'
- q = ab + bc + ac + abc

Superfluous Terms

* The following Two Equations Represent The Same Function.

$$q = ab + bc + ac + abc$$

 $q = ab + bc + ac$

a	b	c	q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Prime Implicants

- A Prime Implicant is a Product of Variables or Their Complements, eg. ab'cd'
- * If a Prime Implicant has the Value 1, then the Function has the Value 1
- A Minimal Equation is a Sum of Prime Implicants

Minimization and Minterms

- Minimization Reduces the Size and Number of Prime Implicants
- A MinTerm is a Prime Implicant with the Maximum Number of Variables
- * For a 3-input Function a'bc is a MinTerm, while ab is not.
- Prime Implicants can be Combined to Eliminate Variables, abc'+abc = ab

Minimization with Maps

A Karnaugh Map

			B		
		00	01	11	10
	0	1	0	0	1
A	1	1	0	0	0

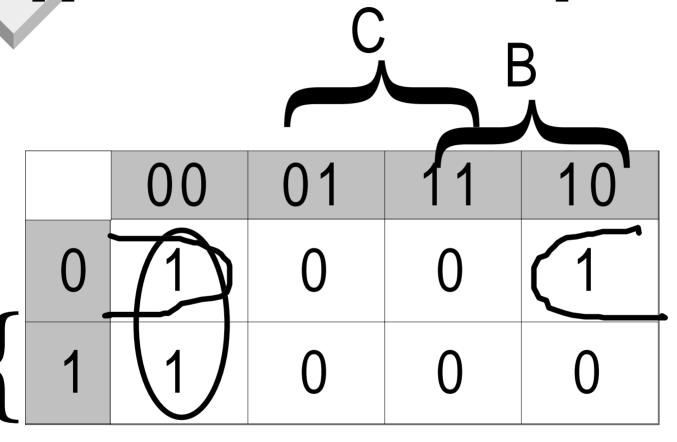
Procedure

- Select Regions Containing All 1's
- * Regions should be as Large as Possible
- * Regions must contain 2^k cells
- Regions should overlap as little as possible
- * The complete set of regions must contain all 1's in the map

Procedure 2

- Top and Bottom of Map are Contiguous
- Left and Right of Map are Contiguous
- Regions represent Prime Implicants
- Use Variable name guides to construct equation
 - Completely inside the region of a variable means prime implicant contains variable
 - Completely outside the region of a variable means prime implicant contains negation

Applied to Previous Map

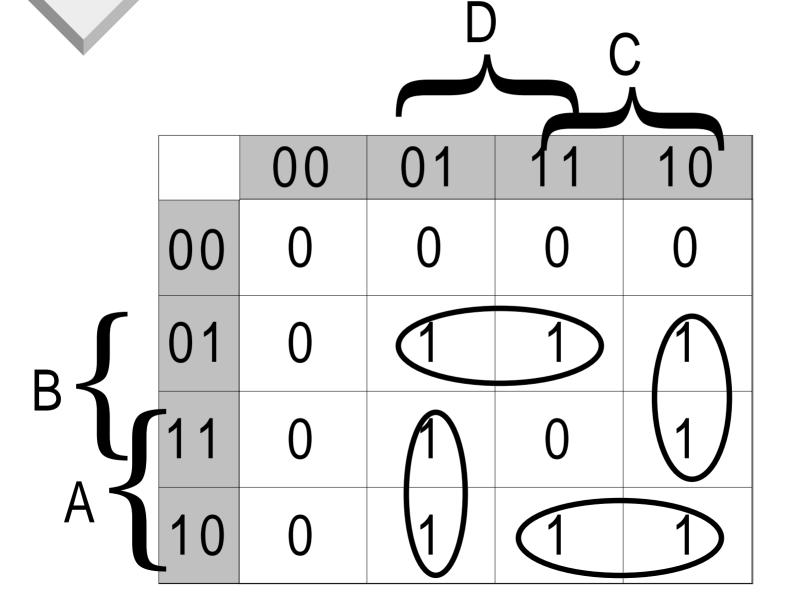


$$q=c'b'+c'a'$$

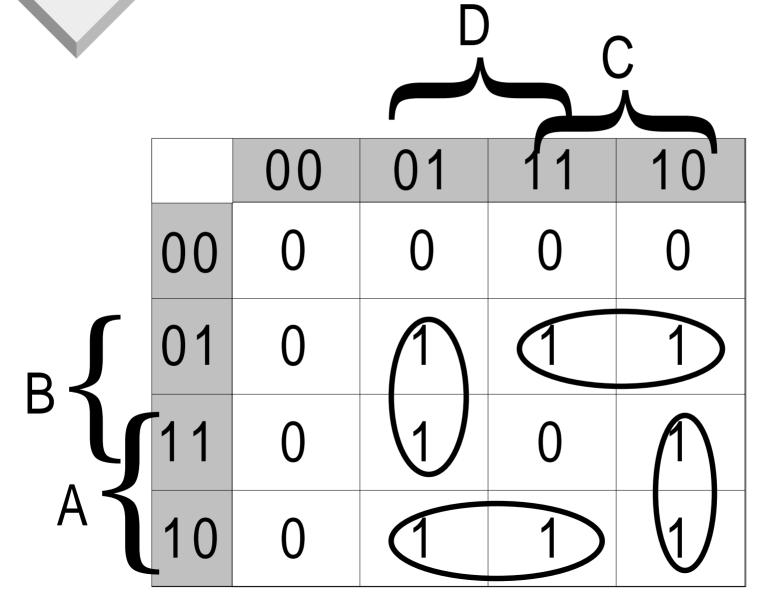
A 4-Variable Karnaugh Map

			•		
		00	01	11	10
	00	0	0	0	0
B	01	0	1	1	1
	11	0	1	0	1
A	10	0	1	1	1

First Minimization



Second Minimization



Minimal Forms for Previous Slides:

$$*ab'd+bc'd+a'bc+acd'$$

$$*ac'd + a'bd + bcd' + ab'c$$

- * Moral: A Boolean Function May Have Several Different Minimal Forms
- * Karnaugh Maps are Ineffective for Functions with More than Six Inputs.

Quine McClusky Minimization

- Amenable to Machine Implementation
- Applicable to Circuits with an Arbitrary Number of Inputs
- * Effective Procedure for Finding Prime Implicants, but ...
- Can Require an Exponential Amount of Time for Some Circuits

Quine-McClusky Procedure

- Start with The Function Truth Table
- Extract All Input Combinations that Produce a TRUE Output (MinTerms)
- Group All MinTerms by The Number of Ones They Contain
- Combine Minterms from Adjacent Groups

More Quine-McClusky

- * Two Min-Terms Combine If They Differ by Only One Bit
- The Combined MinTerm has an x in the Differing Position
- Create New Groups From Combined Min-Terms
- * Each Member of A New Group Must Have the Same Number of 1's and x's

Yet More Quine-McClusky

- Each Member of A Group Must Have x's in The Same Position.
- Combine Members of the New Groups
 To Create More New Groups
- Combined Terms Must Differ By One Bit, and Have x's in the Same Positions
- Combine as Much as Possible
- Select Prime Implicants to "Cover" All Ones in the Function

Quine-McClusky Example 1

Numbers in Parentheses are Truth-Table Positions.

```
0011(3) 1100(12)
0111(7) 1011(11) 1101(13)
1110(14)
1111(15)
```

Quine-McClusky Example 2

New Groups After Combining MinTerms

0x11(3,7)	110x(12,13)
1x11(11,15)	111x(14,15)
x011(3,11)	11x0(12,14)
x111(7,15)	11x1(13,15)

Quine-McClusky Example 3

The Final Two Groups

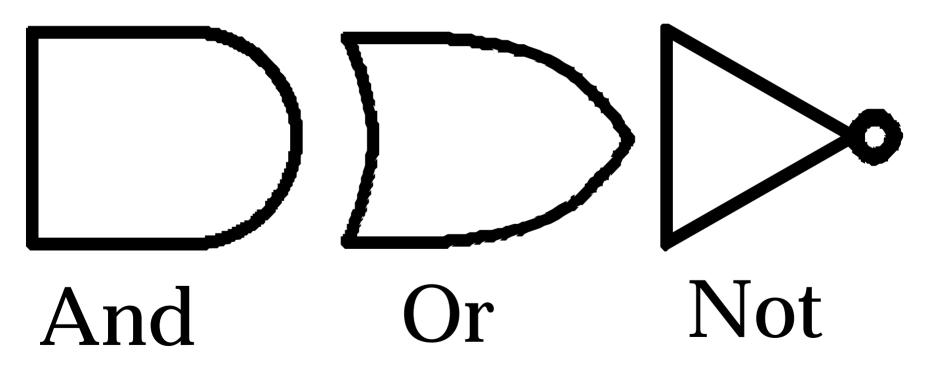
Note That These Two Elements Cover All Truth-Table Positions

xx11(3,7,11,15) 11xx(12,13,14,15)

Quine-McClusky Example 4

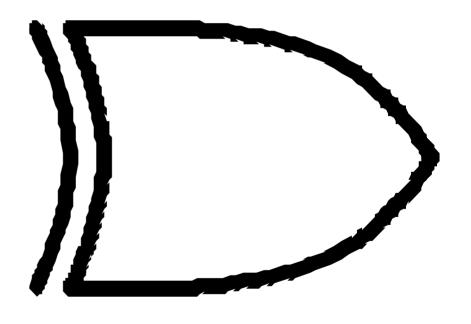
- Each Group Element Represents a Prime Implicant
- * It is Necessary to Select Group Elements to Cover All Truth-Table Positions.
- In This Case, ab+cd is the Minimal Formula.
- In General, Selecting a Minimal Number of Prime Implicants is NP-Complete

Basic Logic Symbols

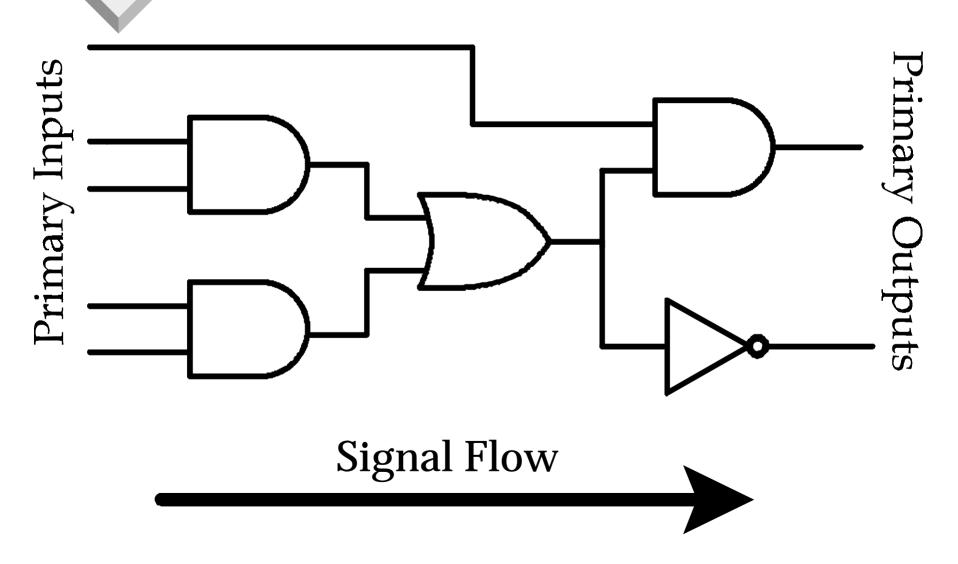


The Exclusive Or Function

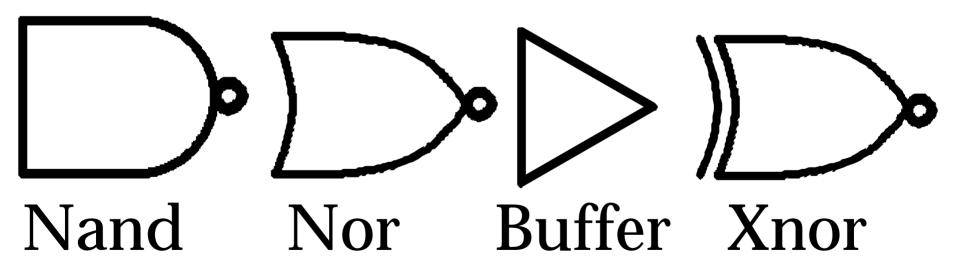
Xor	0	1
0	0	1
1	1	0



A Simple Logic Diagram



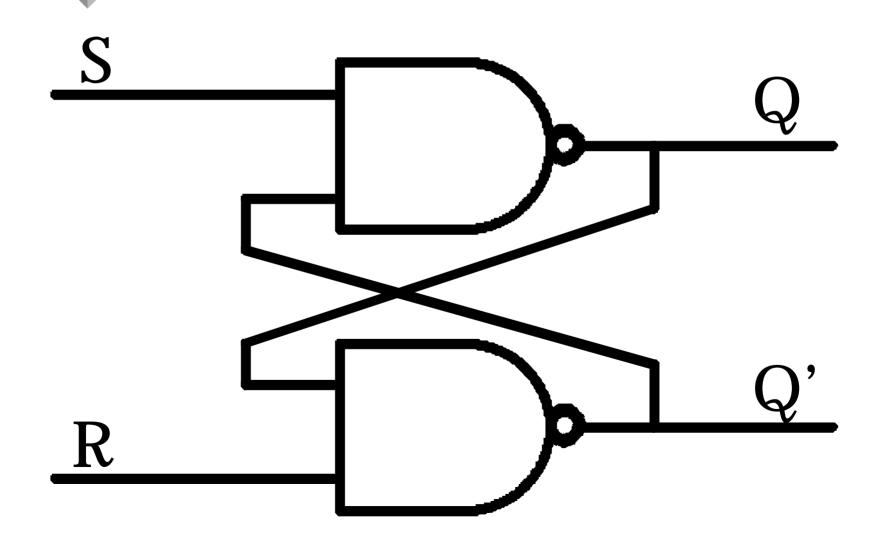
Additional Logic Symbols



Sequential Logic

- Contains Memory Elements
- Memory is Provided by Feedback
- Circuit diagrams generally have implicit or explicit cycles
- Two Styles: Synchronous and Asynchronous

An RS Flip-Flop



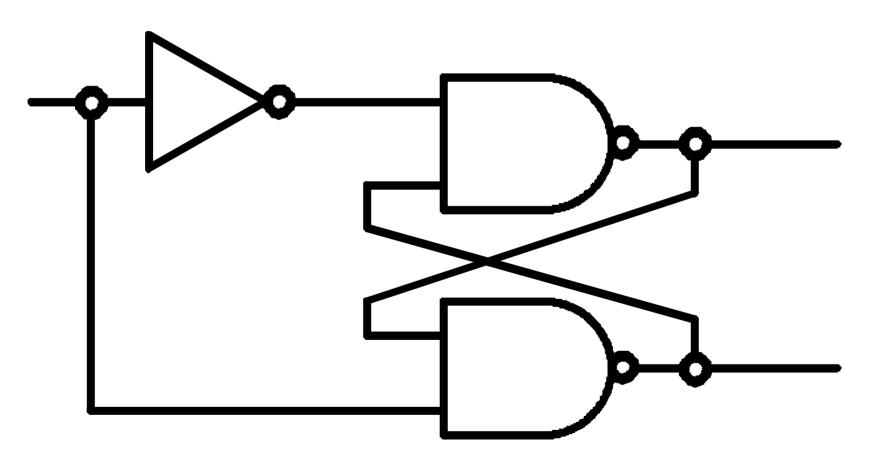
RS Characteristics

- * If S=0 and R=1, Q is set to 1, and Q' is reset to 0
- ❖ If R=0 and S=1, Q is reset to 0, and Q' is set to 1
- ❖ If S=1 and R=1, Q and Q' maintain their previous state.
- ❖ If S=0 and R=0, a transision to S=1, R=1 will cause oscillation.

Instability

- * RS flip-flops can become unstable if both R and S are set to zero.
- All Sequential elements are fundamentally unstable under certain conditions
 - Invalid Transisions
 - Transisions too close together
 - Transisions at the wrong time

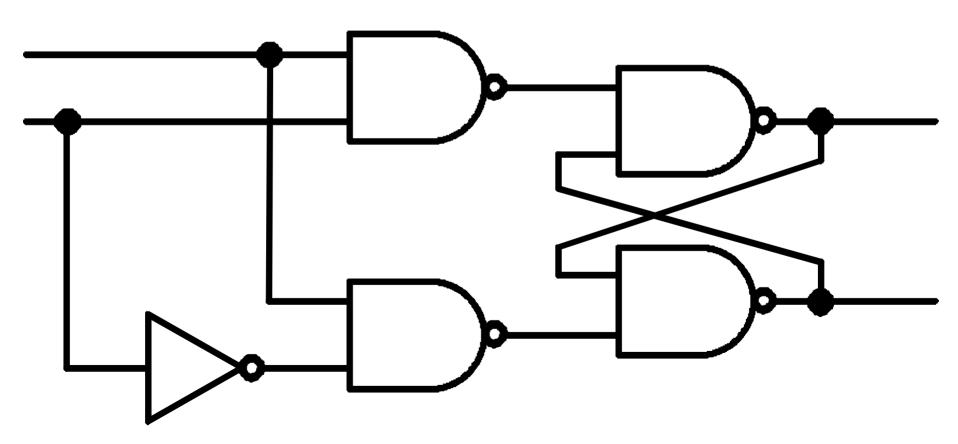
D Flip-Flops



D-Flip Flop Characteristics

- * Avoids the instability of the RS flip-flop
- Retains its last input value
- Formally known as a "Delay" flip-flop
- May become unstable if transisions are too close together
- * Is generally implemented as a special circuit, *not* as pictured here.

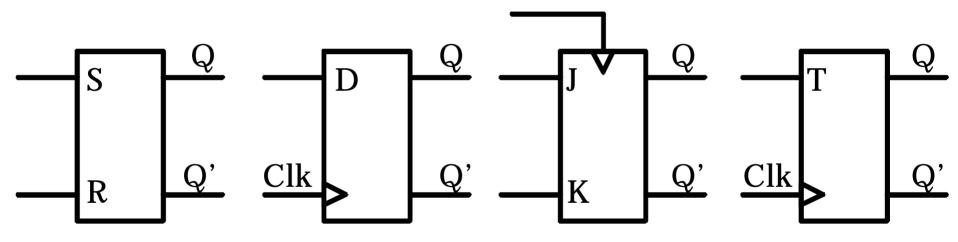
A Clocked D Flip-Flop



Clocked D-Flip Flop Characteristics

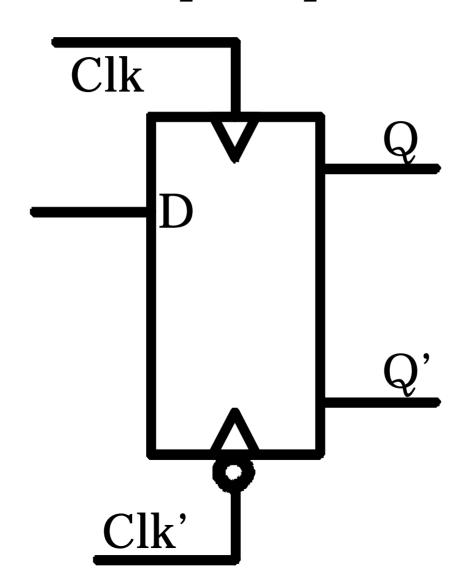
- Synchronizes transisions with a clock
- Input should remain stable while clock is active
- Transision at the wrong time can cause instability
 - Changes while clock is active
 - Changes simultaneous with clock

Flip-Flop Symbols



Flip-Flop Symbols Contain Implicit Feedback Loops

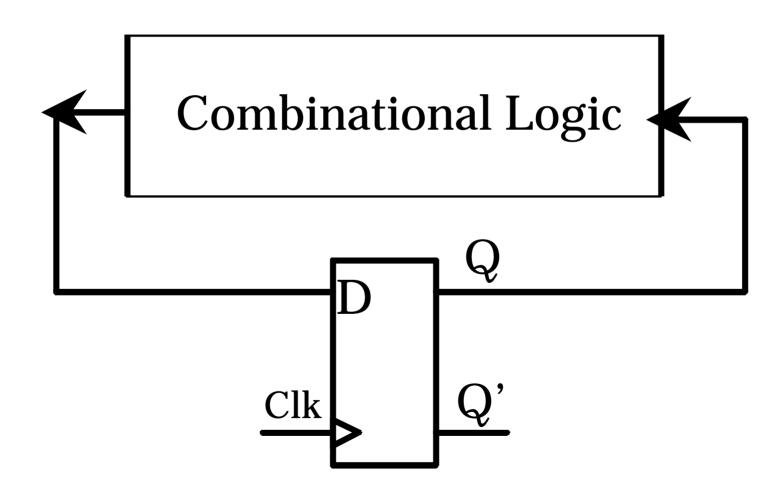
A CMOS Flip-Flop



CMOS Logic Elements

- CMOS = Complementary MOS
- CMOS Elements Often Require 2 Clocks or 2 Controls
- Clocks or Controls must be Complements of One another
- Clock-Skew (Non-Simultaneous changes in both clocks) can cause problems

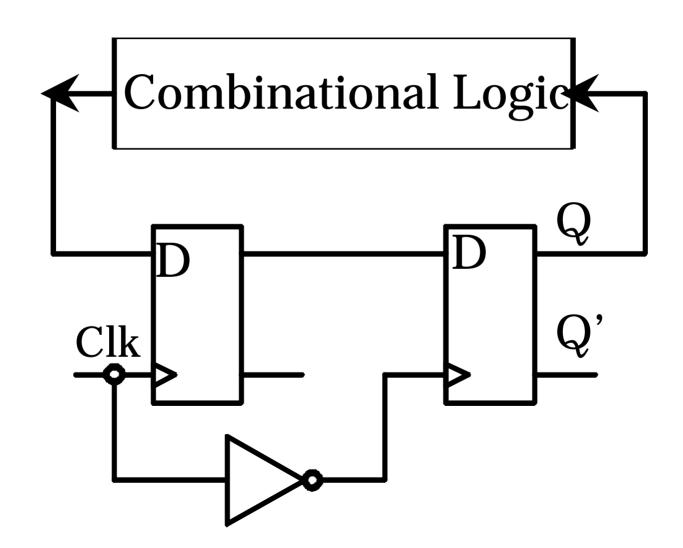
An Asynchronous Sequential Circuit



Asynchronous Circuits

- Combinational Logic is used:
 - To Compute New States
 - To Compute Outputs
- State is maintained in Asynchronous Circuit Elements
- Care must be used to avoid oscillations

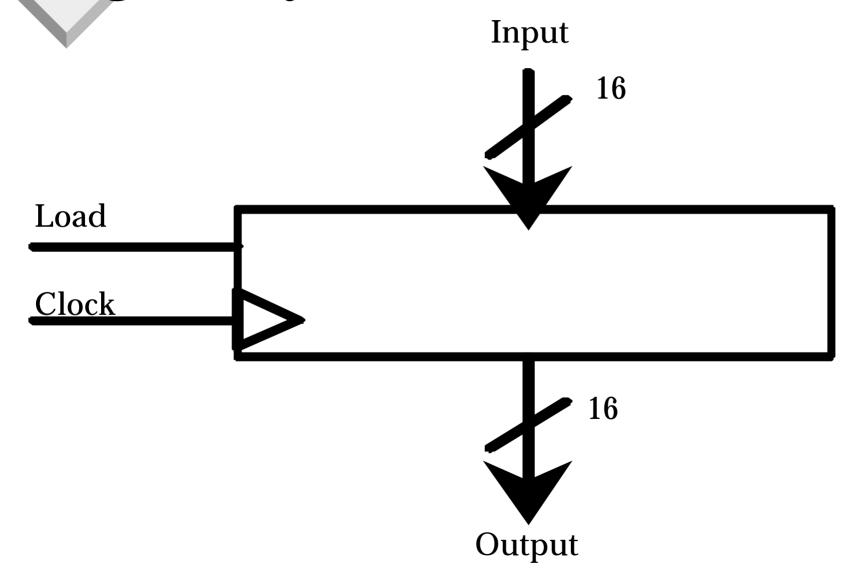
A Synchronous Sequential Circuit



Synchronous Circuits

- Combinational Logic is used to:
 - Compute New States
 - Compute Outputs
- State is maintained in Synchronous Flip-Flops
- State Changes can be made only when clock changes
- Combinational Logic Must be Stable when Clock is Active

Register Symbol



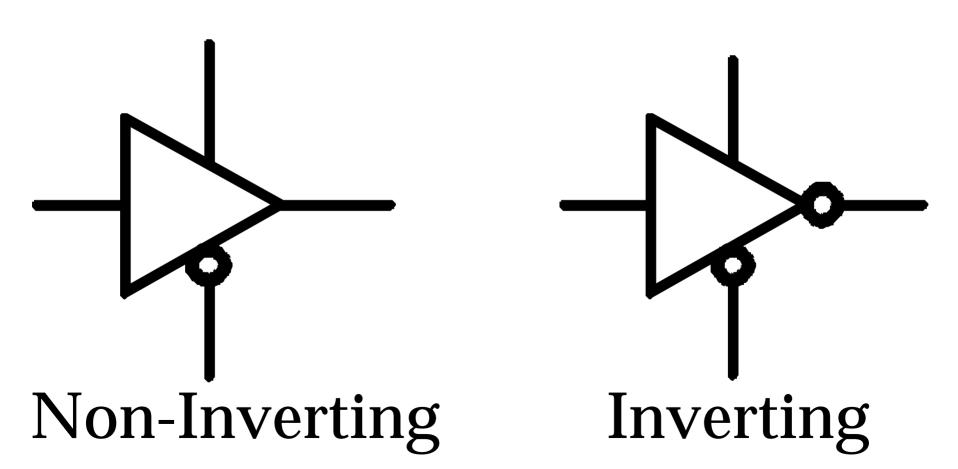
Register Issues

- Generally A Collection of D Flip-Flops
- Can be Synchronous or Asynchronous
- Default is Assumption is Synchronous
- May have internal wiring to:
 - Perform Shifts
 - Set/Clear
 - All-Zero Status Flag

Tristate Elements

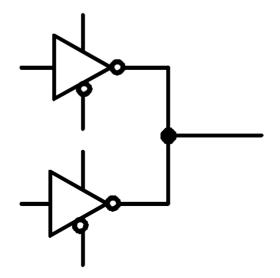
- Three States:
 - Zero (Output is grounded)
 - One (Output connected to Power Terminal)
 - High-Impedance (Output Not Connected to Either Power Or Ground)
- Can be Used to Construct Cheap Multiplexors

CMOS Tri-state Buffers



Tri-State Buffer Issues

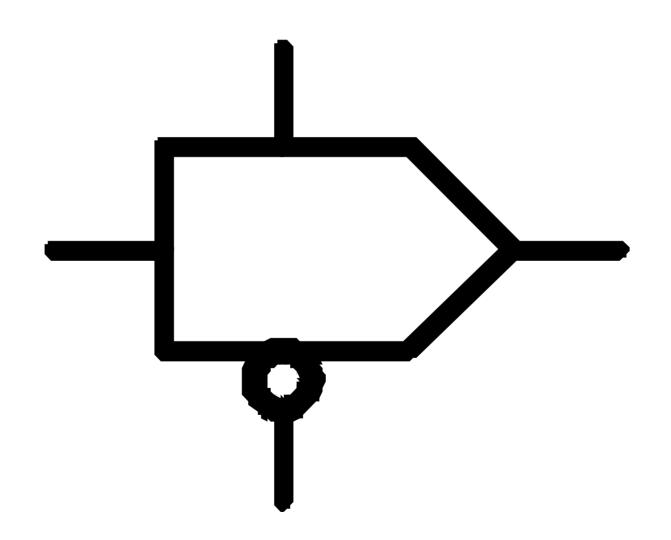
- The Gate Amplifies its Signal
- May be Inverting or Non-Inverting
- Often used to Construct Multiplexors Using Wired-Or Connections



More Tri-State Issues

- * In a Wired-Or Connection, Only One Buffer can be in Non-Tristate State
- Violating This Rule Can Destroy The Circuit Due a Power/Ground Short

The CMOS Transmission Gate



Transmission Gate Issues

- Similar to Tristate Buffer
- Has No Amplification
- Number of Consecutive Transmission Gates is Limited
- Similar Problems With Wired-Or Connections